
CMP2089M, Instruction Set Emulation -
Assignment 2

Group 29 - Alex Howe, Hayden Moir, Lokesh Bhatti,
Matthew Micklewright, Samuel Rehill and David Churchill

Project Supervisor: Dr Charles Fox

University of Lincoln, School of Computer Science

2019
April

Abstract

This project has been aiming to emulate the ARM7TDMI processor
(as well as its instruction set) in software as laid out in our project pro-
posal. The ARM7TDMI processor which was designed by ARM holdings
and licensed for manufacture by Texas Instruments (among another 164
licensees) in 1993, was most famously used in the Nokia 6110 phone [1].
The ARM7TDMI is a RISC (Reduced Instruction Set Computer) archi-
tecture and features a 32-bit Data bus, 32-bit Address bus and 32-bit ALU
(Arithmetic Logic Unit). As well as 32-bit ARM instructions (common to
all ARM processors) the ARM7TDMI also has the capability to run the
Thumb instruction set. These are 16-bit instructions that upon execution
are decompressed into full 32-bit ARM instructions and, as such, can be
used in situations where code density is preferable to execution speed.
The ARM7TDMI has 7 operating modes, 7 interrupt/ exception types
and a 3-stage pipeline as well as being a Von Neuman Architecture [2].

1

Contents
1 Introduction 4

1.1 Project Overview . 4
1.2 Group Process . 5

2 Solution design 6
2.1 Justification of Tools . 6
2.2 Program Structure . 8
2.3 Emulation Vs Simulation . 10

3 Evaluation 11
3.1 Functional Demonstration . 11
3.2 Reflection on Group Process . 11
3.3 Individual Contributions . 12

A Source Code 14
A.1 ControlUnit.h . 14
A.2 ControlUnit.cpp . 14
A.3 ALU.h . 20
A.4 ALU.cpp . 21
A.5 memory.h . 24
A.6 memory.cpp . 25
A.7 Register.h . 26
A.8 Register.cpp . 26
A.9 maintTest.cpp . 27
A.10 index.html . 28
A.11 main.js . 28
A.12 functions.js . 29
A.13 style.css . 30
A.14 input.txt . 32

B Record and Summary of Meetings 33
B.1 08/02/2019 . 33
B.2 11/02/2019 . 33
B.3 15/02/2019 . 33
B.4 18/02/2019 . 33
B.5 01/03/2019 . 33
B.6 04/03/2019 . 33
B.7 07/03/2019 . 34
B.8 08/03/2019 . 34
B.9 11/03/2019 . 34
B.10 15/03/2019 . 34
B.11 22/03/2019 . 34
B.12 29/03/2019 . 34
B.13 05/04/2019 . 35

2

C Solution Demonstration 35

3

1 Introduction
Note that, to
assist in the
marking of
this document,
extracts from
the criterion
reference grid
have been
included as
margin notes
beside the
section(s) that
are evidence of
fulfilling that
criteria.

1.1 Project Overview

Criterion 2:
Document the
production of
the artefact
in written or
video form.

This project initially set out with the aim to enhance our own understanding of
RISC architectures (and in particular the ARM7TDMI). However, as the team
proceeded with creating the emulator it was soon realised that not only could
this be an effective means to test our understanding of the architecture, it could
also be a tool to help others visualise the workings of the processor.

The aims of this project therefore became two fold: Firstly, to enhance all
group member’s understanding of the design and functionality of RISC archi-
tectures and secondly, to create an emulator that could help to demonstrate a
RISC architecture to others.
Subsequently, there were a number of objectives to fulfil to ensure these aims
were achieved, the prime one to create a working emulator in software of a RISC
architecture (and in particular the ARM7TDMI). The first step in this was re-
search into RISC architectures in general as well as the exact specifications of
the processor.
A full review of academic literature was performed in our project plan, however
our key sources were:

1. Stallings, W. (2016) Computer Organization and Architecture: Designing
for Performance, 10th Edition. Boston: Pearson.

2. ARM ltd. (2004) ARM7TDMI: Technical Reference Manual, Revision:
r4p1.

3. ARM ltd. (2005) ARM Architecture Reference Manual.

The first gives a broad overview of the topic of Computer Architecture and
was a vital starting point. The second and third give technical details on ARM
instructions and the ARM7TDMI’s own specific architecture.

Criterion 2:
Changes made
to the aim
and objectives
have been fully
explained and
justified

Once research had been done on the requirements to emulate the processor
the work was divided into atomic packages that could be completed by a subset
of the group.
Table 1 shows the work packages, the importance attributed to them in the
project plan and the package’s completion date. Of particular note is the ‘Re-
verse Debugger’ which was added later, when the project’s aims were broadened
to include it acting as a teaching tool.

In terms of application, this could easily be used in a classroom environment
scenario to demonstrate the effects and usage of assembly code and lower-level
languages to undergraduate students or people studying Computer Science at
Sixth Form or GCSE. With more work it could possibly be utilised to show the
workings of CPU bugs such as the Spectre and Meltdown vulnerabilities.

4

Table 1: Work Packages and information about their completion dates
Work Package Importance Goal Delivery Date Actual Delivery Date
Registers High 18/02/2019 18/02/2019
Control Unit (with LDR, STR & ADD) High 08/03/2019 08/03/2019
ALU High 08/03/2019 08/03/2019
Memory High 08/03/2019 08/03/2019
Branching Medium 22/03/2019 22/03/2019
Other ALU Instructions (MUL, SUB, ORR etc.) Medium 22/03/2019 08/03/2019
Addressing Modes Medium 22/03/2019 29/03/2019
Interrupts Low 05/04/2019 N/A
Operating Modes Low 05/04/2019 N/A
Thumb Instructions Low 05/04/2019 N/A
Pipeline Low 05/04/2019 N/A
Reverse Debugger N/A N/A 05/04/2019

1.2 Group Process
When deciding upon the process for this group project the two most popular
(and opposing) frameworks, Agile and Waterfall, were considered. In reality
these two have a variety of extensions and sub-cultures but the general princi-
ples they encompass stand at either end of a spectrum. For the purposes of this
project however, they were considered as discrete and atomic frameworks.

Criterion 2:
Theoretical
frameworks
presented in
the lecture
programme
are critically
analysed and
related to
actual group
experience.
Reference is
made to other
theoretical
frameworks
and their spe-
cific relevance
to a group
project is
discussed.

Waterfall is a framework where "the overall process generally cascades down"
[4]. It works from the principal that once you have the requirements of a system,
these can be broken down into specifications which outline fully how the "team
will be able to design, build, and/ or purchase subsystems and components" [4]
Waterfall has the benefit of leaving a clear trail of documentation from the ini-
tial requirements, to a full technical specification. It does however have some
drawbacks, primarily it can suffer ‘scope creep’ i.e. initial requirements are es-
tablished but, as the design progresses, the aims and requirements shift. This
is a great concern due to waterfall’s rigidity and the core idea that ‘work can
only cascade down’. If changes are made, it requires that the process must be
restarted from the point of alteration.

Agile’s main principles are "Individuals and interactions over processes and
tools, Working software over comprehensive documentation and Responding to
change over following a plan" [3]. It aims to fix this issue of "scope creep" by
fully embracing it; Agile assumes that requirements will change and so avoids
ever having a large overarching plan.

"The project is divided into a sequence of small, iterative efforts, each con-
ducted by a team devoted to meeting a limited set of requirements and releasing
a partial result or solution" [4]. This allows for additional requirements to be
added at any stage of the process. For example, in this project it was realised
that, to enhance the emulator’s capabilities as a teaching tool, a reverse debug-
ger would be highly beneficial. In a waterfall framework this would either have
meant returning to the design stage, abandoning most of the implementation
done or simply continuing without this feature.

5

As stated by Agile Alliance above, keeping a working prototype available at
all times is a vital feature of Agile and was something the team found useful
whenever a demonstration of progress to the supervisor was needed.
There are however drawbacks to the Agile framework, because there is never
confidence in the current state of the project, there is no incentive to ever create
documentation. This can lead to a situation at the end of the process with little,
or no reliable documentation.
It can also be said that because there are no concrete requirements in a project
that it is hard to say when it is complete, it is possible that a system might
forever receive new requirements and functionality.

Of course a variety of other frameworks, many based upon the core ideas
of Agile and Waterfall. For example, Scrum is a framework which builds off of
Agile, it works on the basis of having ‘Product Owner’ who coordinates small,
"cross-functional and self-organising teams" [7]. The framework is divided into
short ‘sprints’ with a small sub-aim at the end; the sprints last for around two
weeks and whilst they are on the team has a daily stand-up meeting tp "review
what they’ve done and what they will work on for the rest of the day" [7].

2 Solution design

2.1 Justification of Tools
Criterion 2:
The choice of
tools used in
the production
of the artefact
is completely
appropriate
and has been
comprehen-
sively justified.

Criterion 2:
Clear evidence
of the way
in which the
tools selected
were used to
support group
processes has
been provided.

The first tool is a shared OneDrive Site, in conjunction with Microsoft Word
which was used to write the project plan. Having the site allowed us to easily
share any documentation (of almost any file type) found during the research
phase of the project, once the project moved onto compiling a formal plan, col-
laborative use of Word Online allowed for the editing of the same document
in real time from different locations. Another benefit is the automatic cloud
backups which reduce the risk of data loss (a constant concern for any digital
project). There are however downsides to Word Online; its design as a word
processor it is unable to typeset as well as a program designed with typesetting
in mind.

Due to the decision to run this project as an iterative process in line with
Agile development, it would be beneficial to use a version control system so that
experimentation could be done on new branches whilst maintaining a working
master branch for demonstrations. GitHub was used due to its centralised cloud
storage, version control and functionality for team working. Another advantage
of using GitHub has also been able to run a vast range of different programming
languages making it very useful when merging together different types of code,
an example of this is when C++ was used to create the instructions sets and
emulated parts of CPU, then Javascript used to show a visual front end to show
of the process of the emulation. There is also a revision control system which

6

keeps a record of each persons work contributed to the project which is very
helpful to identify people who are not actively involved and prevent worries of
group members taking credit for other people’s work.

To be an effective team, it is important to maintain good and clear commu-
nication between one another. To do this, a text message service that is free to
use was needed. There were a variety of options available but in the end, we
decided to choose Discord. The reason we chose Discord is that it is a supporter
of open source software development and is itself, open source [10]. It allows for
group conversation and uploading files while still being a fast and responsive
text messaging service. Discord can also be used on various devices including
within web browsers, and on phones making it more accessible. We also used
Discord to log our group meetings because this provide more transparency to
what is happening in each of the group meeting and what our aims were for the
next meeting. Discord is a good communication device, but it does have some
limitations such as that it cannot send large text files, for this reason we also
used email to send files and letters. Furthermore, email can also be used for
backup just in case we lose communication through Discord.

When deciding upon the programming language(s) used in this project, it
was decided that it would be beneficial to use a language with which the team
were all familiar. This caused to choose C++ as our main language, the reason
for this choice is that it is an object-oriented focused language which means the
way it would be organised and structured will make it more intuitive. C++ pro-
grams can be broken down into separate source (and header) files meaning the
programming can be split into parts, making it better for Agile development.
An example of this was creating the four classes: registers, control unit, ALU
and memory (code available in appendix A.7 & A.8, A.1 & A.2, A.3& A.4 and
A.5 & A.6 respectively). Another advantage is that C++ also use inheritance
and polymorphism which allows reusing code to increase efficiency and save
time. C++ will also provide more experience in the computer science industry,
according to Stack Overflow’s 2018 survey of professional developers 24.6% used
C++ [6].

During the development, it was decided that a more visual representation
of the emulation was needed, unfortunately, C++ has limitations in terms of
visual display which is why Javascript was used. Another reason why to use
Javascript was the high amount of interactivity, making the emulation more user
friendly which would help the student get more involved in the program. The
third reason why Javascript was a good choice is it has good interoperability
making it workable on a variety of operating systems.

Another challenge was finding a suitable IDE (Integrated Development En-
vironment) that will increase the productivity of coding and help spot program-
ming errors. Our preferred tool was Visual Studio, the reason is Visual Studio’s
graphical user interface is designed for complex codes like C++ and JavaScript

7

making it much easier to read and modify. Another advantage of using Visual
Studio is that it has an inbuilt debugger, making it much easier to spot pro-
gramming errors and find ways to improve efficiency.

Despite using Word Online to write our first report, it was decided to switch
to a tool that was better at typesetting. Due to it being a popular, open source
tool, LaTeX was an obvious choice. Latex is also commonly used in technical
papers, reports and books which mean that it is useful to learn as it can be
applied to many common industry practices. The main drawback of LaTeX, is
that nobody in the team had any prior experience using it, so it could be argued
that a small amount of time was wasted getting up to speed on how to use the
software.

2.2 Program Structure
Criterion 2
& 3: Doc-
ument the
production of
the artefact
in written or
video form

To better increase the chances of conveying an accurate understanding of the
workings of the processor and its sub-components, it was decided that designing
the code in an object oriented style was key. The reason being that when ex-
plaining a processor, it is often by describing atomic components like the ALU
and Control Unit and the way they interact and perform tasks independent of
each other. This translates well to an Object Oriented style where there can be
separate objects interacting with each other.

The general structure of the objects as indicated in Figure 1 is that the con-
trol unit is the top level object, it in turn then possesses subcomponents: mem-
ory, an ALU and an array of Registers (36 registers and one program counter).
As in the physical processor, the control unit handles the fetching of instructions
from memory, decodes them and executes them within the ALU.

Fetching is done in MainTest.cpp, decoding and then executing the instruc-
tions is then done inside of the Decode subroutine in the ControlUnit.cpp, the
full code for this process can be found in Appendix A.2.

The Decode subroutine collects the instructions and then runs them through
the process of testing for a valid condition and/or instruction, if the condition
is valid it is checked. Instructions that make it this far are then put through
a large ‘if’ ‘else’ condition to find the corresponding function, the instructions
functionality is then performed (e.g. set memory location if "STR"). Arithmetic
and logic instructions are passed to the ALU object which handles instructions
in a similar way.

When the ALU receives an instruction (see Appendix A.4) in the Control
subroutine it compares the instruction to a list of valid instructions in an ‘if’,
‘else’ statement. The corresponding function is then performed for that instruc-
tion.
Because all ARM instructions are conditional, a check has to be done in the
decode phase to not only root out incorrect instructions and/or conditions but

8

also to perform the conditional check if one is required. The subroutine Vali-
dateInstructionCondition() takes the potential instruction to be run and checks
whether it is a valid instruction and/or condition. It does this by using the two
functions ValidCondition and ValidInstruction, the former takes the last two
characters of the string and checks them against a list of valid conditions.
ValidInstruction takes all but the last two letters of the string and checks against
a list of valid instructions to ensure it is correct. By splitting off the string into
these two functions and returning a Boolean value for each, it is ascertained
whether there is an executable instruction on its own or an executable instruc-
tion with a condition. The source code for this processes is available in Appendix
A.2.

Another area of particular interest in the program is the handling of memory;
in the physical processor there is a 32-bit address bus allowing for an address-
able memory space of 4,294,967,296 bits. However, to reduce complexity it was
decided that instead of a fixed memory, a variable sized vector to simulate mem-
ory could be used. LDR pops from memory vector and STR pushes.
For the most part, register values are stored as an Integer data type, however,
when manipulation of a single bit is required, such as when the ALU performs a
comparison (CMP) it must alter the zero flag of the CPSRs (Current Program
Status Registers) the Integer value must first be converted to a 32-bit binary
number. The code for this is available in Appendix A.3 in the ConverToBinary
subroutine. Once the value is converted the n th bit can then set to True of False.

9

Figure 1: UML Diagram Explaining Class Structure

2.3 Emulation Vs Simulation
In a project such as this, a key issue is the debate between emulation and simu-
lation. Is it better to faithfully reproduce a system at the expense of simplicity
and maintainability?
Generally, the view that faithful emulation is best, unless it will cause part
of the system to be needlessly intricate and subsequently hamper a student’s
understanding, has been taken. For example, there are 37 registers capable of
storing a signed 32-bit binary number, just as in the physical processor, however
they are treated as Integer data type unless it is absolutely necessary to address
individual bits (for example in the program status registers).This is because
for the most part, the register values are more understandable as integers to a
human programmer.
Another example is the use of a vector to represent memory, it is not of fixed
size as the physical memory would be but it reduces file size and complexity
when addressing it and thus is a reasonable cause to simulate this section rather

10

than directly emulate it.

3 Evaluation
Criterion 1:
Produce and
demonstrate
an artefact
which satisfies
project ob-
jectives and
achieves the
project aim.

3.1 Functional Demonstration
A collection of images demonstrating the working emulator are available in ap-
pendix C.
Figure 2 shows the program running, on the left hand side is a visual represen-
tation of memory. In the top right are the registers (R1-37) and in particular
the Current Program Status Register’s (CPSR) value in binary is highlighted
in blue to allow the programmer to check the flag bits.
In the bottom right is the program being run, the blue highlight indicates the
instruction that has just been executed. Next to this are the controls so that a
programmer can step through the program line by line (these are shown better
in Figure 9).
In Figure 2, the program being run generates the Fibonacci sequence (a clearer
version is available in Figure 7). On line 5 of this program there is a CMP
(Compare) condition; in an ARM7TDMI the Zero flag of the CPSR is set to
true when a CMP condition is met. Figure 10 shows the updated CPSR from
that in Figure 2, the 30th bit is now set to one.

3.2 Reflection on Group Process
Criterion 3:
Critically re-
flect on group
processes and
analyse them
with reference
to aspects such
as Belbin and
Tuckman and
other Group
Working pro-
cesses.

When an individual or sub-group found itself struggling with a task they dele-
gated it, of course "you should not delegate those things that you are good at
doing"[5], and the team always encouraged each other to select tasks they felt
capable of accomplishing individually or as part of a sub-group.

There were times where our deliverables were behind the planned date of
completion. For example in a meeting, the minutes of which are available in
appendix B.11, there was a discussion about issues a sub-group were having
completing the addition of addressing modes to the emulator. In a waterfall
framework this could have been very disruptive to the pre-planned schedule.
However, due to Agile’s flexibility extra team members were able to join that
sub-group to work on the problem, the deadline was also re-adjusted. This is a
prime example of how Agile can work around unforeseen difficulties.

Criterion
3: A good
reflection on
group pro-
cesses and how
their improve-
ment might
have led to an
improvement
in project
outcome.

As can be noted in table 1, some of the work packages were not delivered
due to time constraints. Functionality such as interrupts, operating modes and
pipelining were deemed as less important as the project progressed. In particu-
lar, it was decided that adding a reverse debugger was of much higher importance
in achieving our aim of a teaching tool for RISC architectures than these wok
packages.

11

In conclusion, this project has been executed well. We utilised an agile de-
velopment model, successfully used GitHub as a repository for our code and as
a system for version control and achieved a suitable balance between emulation
and simulation. With more time and resources, this project could have created
a more faithful and accurate emulation of the ARM7TDMI, however the current
implementation sufficiently meets the project aims.

Were this project to be repeated, an additional goal would be to aim to have
more documentation on the structure of the program as, due to using Agile
there was never particularly an incentive to document anything. Another area
of improvement could be communication between group members; there were
times when group members did attend consecutive meetings leading to a lack
of cohesion on the project’s direction.

3.3 Individual Contributions

Table 2: All group members along with their agreed contribution
Name Student ID Contribution Signature

Lokesh Bhatti 16609087 16

David Churchill 17642848 20

Alex Howe 15618835 16

Matthew Micklewright 16626154 16

Hayden Moir 16608564 16

Samuel Rehill 17638743 16

12

References
[1] Arm Commuity. A Historic look at Arm holdings from 1990-1997. [online]

Available at: https://community.arm.com/processors/b/blog/posts/a-brief-
history-of-arm-part-1 [Accessed 20 Feb. 2019].

[2] ARM ltd. (2004) ARM7TDMI: Technical Reference Manual. Revision: r4p1.

[3] Agile Alliance. (2019). Agile Manifesto for Software Development. [online]
Available at: https://www.agilealliance.org/agile101/the-agile-manifesto/
[Accessed 6 Apr. 2019].

[4] Nicholas, J.M and Steyn, H (2017) Project Management for Engineering,
Business and technology. Fith Edition. New York, USA: Routledge Ltd.

[5] Belbin, R. (2010) Team Roles at Work. second edition. Oxford, UK: Elsevier
Ltd.

[6] Stack Overflow. (2019). Stack Overflow Developer Survey 2018. [online]
Available at: https://insights.stackoverflow.com/survey/2018 [Accessed 9
Apr. 2019].

[7] Paymo. (2019). Project Management Methods, Methodologies, and Frame-
works. [online] Available at: https://www.paymoapp.com/academy/project-
management-methodologies/sixsigma [Accessed 9 Apr. 2019].

[8] Stallings, W. (2016) Computer Organization and Architecture: Designing
for Performance. 10th Edition. Boston: Pearson.

[9] ARM ltd. (2005) ARM Architecture Reference Manual.

[10] Discord. Discord Loves Open Source. [online] Available at:
https://discordapp.com/open-source [Accessed 11 Apr. 2019]

13

A Source Code

A.1 ControlUnit.h

#pragma once
#include <vector>
#include <string>
#include "Register.h"
#include "Memory.h"
#include "ALU.h"
using namespace std;

class ControlUnit {
private:
vector<Register*> registerArray;
ALU* alu;
Memory mem;

//0 - 30 are general-purpose registers
//31 - 36 are status registers
//Pointers are used so one array can have both general-purpose and

specialised registers.
public:
void setRegister(int register, int data); //Set the value of a register
int getRegister(int register); //Get the value of a register
ControlUnit();
~ControlUnit();
vector<string> ReadFile(string);
string FetchNext(bool);
void Decode(string, bool);
int programLength;
std::bitset<32> ConvertToBinary(int val);
int getValueOfArg(string);
int getMemory(int location);

int ValidateInstructionCondition(string PotentialInstruct);
bool ValidCondition(string condition);
bool ValidInstruction(string instruction);
bool checkConditionFlag(std::string condition);
};

A.2 ControlUnit.cpp

#include "ControlUnit.h"
#include <fstream>
#include <iostream>
using namespace std;

void ControlUnit::setRegister(int registerNumber, int data) {
registerArray[registerNumber]->set(data);
};

int ControlUnit::getRegister(int registerNumber) {
return registerArray[registerNumber]->get();
};

14

int ControlUnit::getMemory(int location){
return mem.getMemory(location);
}

ControlUnit::ControlUnit() {
for(int i = 0; i < 37; i++){
if(i == 15){
PC* pc = new PC;
pc->set(0);
registerArray.push_back(pc);
}
else{
registerArray.push_back(new Register);
}
}
alu = new ALU();
programLength = mem.getProgramLength();
};

ControlUnit::~ControlUnit() {
for(vector<Register*>::iterator it = registerArray.begin(); it !=

registerArray.end(); it++){
delete *it;
}
delete alu;
}

vector<string> ControlUnit::ReadFile(string path) {
string ins;
ifstream myfile(path);
vector<string> lines;

if (myfile.is_open()) {
while (getline(myfile, ins))
lines.push_back(ins);
}
myfile.close();

return lines;
}

void ControlUnit::Decode(string ListOfIns, bool debug) {
string SepIns[4] = {"", "", "", ""};
string op = "";
int result;
SepIns[3] = "none";

//decode
int i = 0;
for (string::iterator it = ListOfIns.begin(); it != ListOfIns.end(); it

++) {
if (*it == ’ ’) {
SepIns[i] = op;
op = "";
i++;
}
else {

15

op += *it;
}
}
SepIns[i] = op;

int Args[3] = {0, 0, 0};

for(int i = 1; i < 4; i++){
if(SepIns[i] != "none" && SepIns[i] != ""){
Args[i-1] = getValueOfArg(SepIns[i]);
}
}

//execute
int validationResult = ValidateInstructionCondition(SepIns[0]);
std::string instruction = SepIns[0];
std::string condition = "";
bool conditionResult = false;

switch(validationResult){
case 0:
//both valid
condition = SepIns[0].substr(SepIns[0].length() - 2); // last 2 letters
instruction = SepIns[0].substr(0, SepIns[0].size() - 2); // all but

last 2 letters
conditionResult = checkConditionFlag(condition);
if(debug) std::cout << "Checking condition: " << condition << std::endl

;
if(!conditionResult){
if(debug) std::cout << "Condition returned false" << std::endl;
break;
}
if(debug) std::cout << "Condition returned true" << std::endl;
case 1:
//Instruction valid but not condition
if (instruction == "STR") {
mem.setMemory(Args[0], Args[1]);
}
else if (instruction == "LDR") {
setRegister(Args[0], mem.getMemory(Args[1]));
}
else if(instruction == "MOV"){
setRegister(Args[1], Args[0]);
}
else if (instruction == "B"){
mem.branchTo(SepIns[1], registerArray[15], debug);
}
else {
if(debug) cout << instruction << " " << Args[0] << " " << Args[1] <<

endl;
// alu->Control(SepIns[0], stoi(SepIns[1]), stoi(SepIns[2]),

registerArray[31]);
result = alu->Control(instruction, Args[0], Args[1], registerArray[31])

;
if(instruction == "CMP"){
registerArray[31]->set(result);
}

16

else{
cout << result << endl;
}
if(SepIns[3] != "none"){
setRegister(Args[2], result);
if(debug) cout << "Stored in r" << Args[2] << endl;
}
}
break;

case 2:
//Neither valid

break;
}
}

int ControlUnit::getValueOfArg(std::string argument){
if(argument.at(0) == ’R’ || argument.at(0) == ’r’){ //Lokesh
string val = argument.substr(1);
int toReturn = 0;
try{
toReturn = stoi(val);
}
catch(exception err){
return 0;
}
toReturn = getRegister(toReturn);
return toReturn;
}
else if(argument.at(0) == ’#’){ //Hayden
string val = argument.substr(1);
int toReturn = 0;
try{
toReturn = stoi(val);
}
catch(exception err){
return 0;
}
return toReturn;
}
else{ //Dinkie
std::cout << "ERROR: Must include either R or # prefix" << std::endl;
return 0;
}
}

std::bitset<32> ControlUnit::ConvertToBinary(int val)
{
std::bitset<32> BinVal = val; // convert int val to 32 bit binary num
return BinVal;
}

bool ControlUnit::checkConditionFlag(std::string condition){
int iCPSR = registerArray[31]->get(); // get int val of CPSR (R31)
std::bitset<32> bCPSR = ConvertToBinary(iCPSR); // converts int val of

CPSR to binary value

17

//31 - N - Negative
//30 - Z - Zero
//29 - C - Carry
//28 - V - Overflow

if(condition == "NE"){ //Not Equal
if(!bCPSR[30]) return true;
}
else if(condition == "EQ"){ //Equal
if(bCPSR[30]) return true;
}
else if(condition == "CS"){ //Carry set
if(bCPSR[29]) return true;
}
else if(condition == "CC"){ //Carry unset
if(!bCPSR[29]) return true;
}
else if(condition == "MI"){ //Minus/negative
if(bCPSR[31]) return true;
}
else if(condition == "PL"){ //Positive/zero
if(!bCPSR[31]) return true;
}
else if(condition == "VS"){ //Overflow set
if(bCPSR[28]) return true;
}
else if(condition == "VC"){ //Overflow unset
if(!bCPSR[28]) return true;
}
else if(condition == "HI"){ //Unsigned higher
if(bCPSR[29] && !bCPSR[30]) return true;
}
else if(condition == "LS"){ //Unsigned lower or equal
if(bCPSR[30] && !bCPSR[29]) return true;
}
else if(condition == "GE"){ //Signed greater than or equal
if(bCPSR[31] == bCPSR[28]) return true;
}
else if(condition == "LT"){ //Signed less than
if(bCPSR[31] != bCPSR[28]) return true;
}
else if(condition == "GT"){ //Signed greater than
if(!bCPSR[30] && (bCPSR[31] == bCPSR[28])) return true;
}
else if(condition == "LE"){ //Signed less than or equal
if(bCPSR[30] && (bCPSR[31] != bCPSR[28])) return true;
}
else if(condition == "AL"){ //Unconditional
return true;
}
return false;
}

string ControlUnit::FetchNext(bool debug){
string nextInstruction = mem.getNextInstruction(registerArray[15]->get

(), debug);

18

registerArray[15]->increment();
return nextInstruction;
}

bool ControlUnit::ValidCondition(string condition)
{
//list of all valid conditions for ARM7TDMI (According to technical

reference manual)
vector<string> ValidConditions = {"EQ", "NE", "CS", "CC", "MI", "PL", "

VS", "VC", "HI", "LS", "GE", "LT", "GT", "LE", "AL"};

//Iterate through valid conditions
for (int i = 0; i < ValidConditions.size(); i++)
{
if (condition == ValidConditions[i]) // if match found
{
return true; // condition is valid, so return true
}
}
return false;
}

bool ControlUnit::ValidInstruction(string instruction)
{
//list of all valid ARM Instructions for ARM7TDMI (According to

technical reference manual)
vector<string> ValidInstructions = { "MOV", "SUB", "ADD", "MUL", "CMP",

"AND", "EOR", "ORR", "B", "BL", "BX", "LDR", "STR",/* "LDC", "MVN
", "MRS", "MSR", "ADC" , "SBC", "RSB" */};

//Iterate through valid instructions
for (int i = 0; i < ValidInstructions.size(); i++)
{
if (instruction == ValidInstructions[i]) // if match found
{
return true; // instruction is valid, so return true
}
}
return false;
}

int ControlUnit::ValidateInstructionCondition(string CondAndInstr)
{
string condition = CondAndInstr.substr(CondAndInstr.length() - 2); //

last 2 letters
string Instruction = CondAndInstr.substr(0, CondAndInstr.size() - 2);

// all but last 2 letters

bool ValidCond = ValidCondition(condition); // true if valid condition,
false if invalid

if(!ValidCond){
Instruction = CondAndInstr;
}
bool ValidInstr = ValidInstruction(Instruction);

if (ValidCond && ValidInstr)
{

19

// check condition then run instruction if true
return 0;
}
else if (!ValidCond && ValidInstr)
{
// run instruction only
return 1;
}
else
{
// don’t run anything
return 2;
}

}

A.3 ALU.h

#pragma once
#include <iostream>
#include <bitset>
#include <limits.h>
#include "Register.h"

class ALU {
public:
int Control(std::string Opcode, int Operand1, int Operand2, Register*

CPSR); // Decodes opcode and conducts ALU functions (e.g. ADD, MUL
etc.)

private:

//Core ALU Functions
int ADD(int Operand1, int Operand2); // adds 2 operands, returns result
int SUB(int Operand1, int Operand2); // subtracts 2 operands, returns

result
int MUL(int Operand1, int Operand2); // multiplies 2 operands, returns

result
int AND(int Operand1, int Operand2); // bitwise AND comparison, returns

result
int EOR(int Operand1, int Operand2); // bitwise XOR comparison, returns

result
int ORR(int Operand1, int Operand2); // bitwise OR comparison, returns

result
int CMP(int Operand1, int Operand2, Register* CPSR); // Compare equal

to, updates zero flag of program status register (True if equal,
False if not equal)

//Other Functions needed for Core ALU Functions (e.g. Abstraction of
validation & binary conversions)

std::bitset<32> ConvertToBinary(int val);
void ValidateADD(Register* CPSR, int Operand1, int Operand2);
void ValidateSUB(Register* CPSR, int Operand1, int Operand2);
void ValidateMUL(Register* CPSR, int Operand1, int Operand2);

};

20

A.4 ALU.cpp

#pragma once
#include "ALU.h"
#include "register.h"

//Public:
//Control Function
int ALU::Control(std::string Opcode, int Operand1, int Operand2,

Register* CPSR)
{
int ReturnVal = 0;
if (Opcode == "ADD")
{
ValidateADD(CPSR, Operand1, Operand2);
ReturnVal = ADD(Operand1, Operand2);
}
else if (Opcode == "SUB")
{
ValidateSUB(CPSR, Operand1, Operand2);
ReturnVal = SUB(Operand1, Operand2);
}
else if (Opcode == "MUL")
{
ValidateMUL(CPSR, Operand1, Operand2);
ReturnVal = MUL(Operand1, Operand2);
}
else if (Opcode == "AND")
{
ReturnVal = AND(Operand1, Operand2);
}
else if (Opcode == "EOR")
{
ReturnVal = EOR(Operand1, Operand2);
}
else if (Opcode == "ORR")
{
ReturnVal = ORR(Operand1, Operand2);
}
else if (Opcode == "CMP")
{
ReturnVal = CMP(Operand1, Operand2, CPSR);
}
return ReturnVal;
}

//Private:
//Core ALU Functions
int ALU::ADD(int Operand1, int Operand2)
{
int result = 0;
result = Operand1 + Operand2;
return result;
}

int ALU::SUB(int Operand1, int Operand2)

21

{
int result = 0;
result = Operand1 - Operand2;
return result;
}

int ALU::MUL(int Operand1, int Operand2)
{
int result = 0;
result = Operand1 * Operand2;
return result;
}

int ALU::AND(int Operand1, int Operand2)
{
std::bitset<32> bOperand1 = ConvertToBinary(Operand1); // convert int

operands to binary operands
std::bitset<32> bOperand2 = ConvertToBinary(Operand2);

std::bitset<32> bResult = bOperand1 &= bOperand2; // perform AND
operation & store in bResult

int iResult = (int)(bResult.to_ulong()); // convert bResult to int
iResult

return iResult;
}

int ALU::EOR(int Operand1, int Operand2)
{
std::bitset<32> bOperand1 = ConvertToBinary(Operand1); // convert int

operands to binary operands
std::bitset<32> bOperand2 = ConvertToBinary(Operand2);

std::bitset<32> bResult = bOperand1 ^= bOperand2; // perform XOR
operation & store in bResult

int iResult = (int)(bResult.to_ulong()); // convert bResult to int
iResult

return iResult;
}

int ALU::ORR(int Operand1, int Operand2)
{
std::bitset<32> bOperand1 = ConvertToBinary(Operand1); // convert int

operands to binary operands
std::bitset<32> bOperand2 = ConvertToBinary(Operand2);

std::bitset<32> bResult = bOperand1 |= bOperand2; // perform OR
operation & store in BinResult

int iResult = (int)(bResult.to_ulong()); // convert BinResult to int
iResult

return iResult;
}

int ALU::CMP(int Operand1, int Operand2, Register* CPSR)
{

22

int iCPSR = CPSR->get(); // get int val of CPSR (R31)
std::bitset<32> bCPSR = ConvertToBinary(iCPSR); // converts int val of

CPSR to binary value

ValidateSUB(CPSR, Operand1, Operand2);
int difference = SUB(Operand1, Operand2); // gets difference of operand

1 or 2
if (difference == 0) //if difference is 0, operands are equal
{
bCPSR.set(30, true); // change 30th bit (zero flag) of CPSR to True
}
else // operands are not equal
{
bCPSR.set(30, false); // change 30th bit (zero flag) of CPSR to False
}

iCPSR = (int)(bCPSR.to_ulong()); // convert back to int
CPSR->set(iCPSR); // set CPSR to new val
return iCPSR;
}

//Other Functions needed for Core ALU Functions (e.g. Abstraction of
validation & binary conversions)

std::bitset<32> ALU::ConvertToBinary(int val)
{
std::bitset<32> BinVal = val; // convert int val to 32 bit binary num
return BinVal;
}

void ALU::ValidateADD(Register* CPSR, int Operand1, int Operand2)
{
int iCPSR = CPSR->get(); // get int val of CPSR (R31)
std::bitset<32> bCPSR = ConvertToBinary(iCPSR); // converts int val of

CPSR to binary value

if (((Operand2 > 0) && (Operand1 > (INT_MAX - Operand2))) || ((Operand2
< 0) && (Operand1 < (INT_MIN - Operand2))))

{
bCPSR.set(28, true); // set overflow flag to TRUE
}

iCPSR = (int)(bCPSR.to_ulong()); // convert back to int
CPSR->set(iCPSR); // set CPSR to new value
}

void ALU::ValidateSUB(Register* CPSR, int Operand1, int Operand2)
{
int iCPSR = CPSR->get(); // get int val of CPSR (R31)
std::bitset<32> bCPSR = ConvertToBinary(iCPSR); // converts int val of

CPSR to binary value

int MinIntSize = -2147483647;

23

if ((Operand2 > 0 && Operand1 < INT_MIN + Operand2) || (Operand2 < 0 &&
Operand1 > INT_MAX + Operand2)) {

bCPSR.set(28, true); // set overflow flag to TRUE
}

iCPSR = (int)(bCPSR.to_ulong()); // convert back to int
CPSR->set(iCPSR); // set CPSR to new value
}

void ALU::ValidateMUL(Register* CPSR, int Operand1, int Operand2)
{
int iCPSR = CPSR->get(); // get int val of CPSR (R31)
std::bitset<32> bCPSR = ConvertToBinary(iCPSR); // converts int val of

CPSR to binary value

long long int LLIoperand1 = (long long int)Operand1;
long long int LLIoperand2 = (long long int)Operand2;

long long int Temp = LLIoperand1 * LLIoperand2; // check calculation
and store in Temp

if ((Temp > INT_MAX) || (Temp < INT_MIN)) // if temp is too large or
small

{
bCPSR.set(28, true); // set overflow flag to TRUE
}

iCPSR = (int)(bCPSR.to_ulong()); // convert back to int
CPSR->set(iCPSR); // set CPSR to new value
}

A.5 memory.h

#pragma once
#include <string>
#include "register.h"
#include <vector>

class Memory{
private:
std::vector<std::string> program; //Program is a vector of strings
std::vector<int> mem; //Memory is a vector of ints
int programLength;
public:
Memory();
~Memory();
int getProgramLength();
std::string getNextInstruction(int pc, bool);
bool branchTo(std::string label, Register* pc, bool);
int getMemory(int location);
void setMemory(int location, int value);
};

24

A.6 memory.cpp

#pragma once
#include "memory.h"
#include <iostream>
#include <fstream>
#include <vector>

Memory::Memory(){ //Constructor for Memory object
std::ifstream file("input.txt"); //Input file is "./input.txt"
std::cout << "Read file" << std::endl;
if(!file){ //If file doesn’t exist, throw error
std::cout << "ERROR: Input file not valid" << std::endl;
}
else{
std::string next;
while(std::getline(file, next)){
program.push_back(next); //Push instruction
programLength++;
}
}
file.close(); //Close file after use

for(int i = 0; i < 1024; i++){
mem.push_back(0);
}
};

int Memory::getProgramLength(){
return programLength;
}

Memory::~Memory(){
delete &mem; //Prevent memory leak
delete &program;
};

std::string Memory::getNextInstruction(int pc, bool debug){
if(debug) std::cout << "Getting instruction at " << pc << std::endl;
std::string nextInstruction = program.at(pc); //Next instruction to

execute is at position stored at PC
return nextInstruction;
};

int Memory::getMemory(int location) {
return mem[location];
};

void Memory::setMemory(int location, int value) {
mem[location] = value;
};

bool Memory::branchTo(std::string label, Register* pc, bool debug){
if(debug) std::cout << "Searching for label: " << label << std::endl;
int index = 0;
for(auto it = program.begin(); it != program.end(); it++){
if(*it == label){

25

pc->set(index+1);
if(debug) std::cout << "Label found at " << index << std::endl;
return true;
}
index++;
}
return false;
};

A.7 Register.h

#pragma once
class Register {
protected:
int data; //The value of this register
public:
int get(); //Get the value of this register
void set(int data); //Set the value of this register
virtual void increment();
virtual void increment(int amount);
Register();
};

class PC : public Register{
public:
virtual void increment();
virtual void increment(int amount);
};

A.8 Register.cpp

#include "register.h"
#include <iostream>

Register::Register(){
data = 0;
}

int Register::get() {
return data;
};

void Register::set(int data) {
this->data = data;
};

void Register::increment(){
std::cout << "ERROR: Can’t increment this register" << std::endl;
}

void Register::increment(int amount){
std::cout << "ERROR: Can’t increment this register" << std::endl;
}

void PC::increment(){
data++; //Default increment by one

26

};

void PC::increment(int amount){
data += amount; //Useful for "skip next x instructions if..."
};

A.9 maintTest.cpp

#pragma once
#include "ALU.h"
#include "ControlUnit.h"
#include "memory.h"
#include <fstream>

int main(int arg){
ControlUnit* cu = new ControlUnit();
// ALU alu;
// std::cout << alu.Control("ADD", 1, 2, new Register) << std::endl;

bool debug = true;
if(arg == 1){
debug = false;
}

std::ofstream registerLog;
std::ofstream memoryLog;
std::ofstream assemblyLog;

registerLog.open("registerLog.log", std::ofstream::out | std::ofstream
::trunc);

memoryLog.open("memoryLog.log", std::ofstream::out | std::ofstream::
trunc);

assemblyLog.open("assemblyLog.log", std::ofstream::out | std::ofstream
::trunc);

for(int i = 0; i < cu->programLength; i++){
assemblyLog << cu->FetchNext(true) << std::endl;
}

cu->setRegister(15, 0);

for(int i = 0; cu->getRegister(15) < cu->programLength; i++){
std::string nextInstruction = cu->FetchNext(debug);
cu->Decode(nextInstruction, debug);
for(int ii = 0; ii < 1024; ii++){
memoryLog << cu->getMemory(ii) << " ";
}
for(int ii = 0; ii < 37; ii++){
if(ii != 31){
registerLog << cu->getRegister(ii) << " ";
}
else{
std::bitset<32> PSR = cu->getRegister(ii);
registerLog << PSR << " ";
}
}
memoryLog << std::endl;

27

registerLog << std::endl;
}

return 0;
}

A.10 index.html

<!DOCTYPE html>
<html>
<head>
<title>Reverse Debugger</title>
<link rel="stylesheet" href="styles.css" type="text/css">
<script>require(’./functions.js’);</script>
</head>

<body>
<h1>ARM7-TDMI Reverse Debugger</h1>
<div id="memory">
</div>
<div id="registers">
</div>
<div id="assembly">
</div>
<div id="controls">
<button type="button" data-value=-5 id="back5">Back 5</button>
<button type="button" data-value=-1 id="back">Back</button>
<button type="button" data-value=1 id="step">Step</button>
<button type="button" data-value=5 id="step5">Step 5</button>
<button type="button" data-value=10 id="step10">Step 10</button>
</div>
</body>
</html>

A.11 main.js

const { app, BrowserWindow} = require(’electron’);
var window;

function createWindow () {
window = new BrowserWindow({ width: 1280, height: 720});
window.loadFile(’index.html’);
window.on(’closed’, () => {
window = null;
});
}

app.on(’ready’, createWindow);

app.on(’window-all-closed’, () => {
if (process.platform !== ’darwin’) {
app.quit();
}
});

app.on(’activate’, () => {

28

if (window === null) {
createWindow();
}
});

A.12 functions.js

const fs = require("fs");
var assemblyLog;
var memoryLog;
var registerLog;
var index = 0;
var buttons;

window.onload = () => {
readLogs();
document.getElementById("back5").onclick = function(){
index += parseInt(document.getElementById("back5").dataset.value);
writeLogs(index);
}
document.getElementById("back").onclick = function(){
index += parseInt(document.getElementById("back").dataset.value);
writeLogs(index);
}
document.getElementById("step").onclick = function(){
index += parseInt(document.getElementById("step").dataset.value);
writeLogs(index);
}
document.getElementById("step5").onclick = function(){
index += parseInt(document.getElementById("step5").dataset.value);
writeLogs(index);
}
document.getElementById("step10").onclick = function(){
index += parseInt(document.getElementById("step10").dataset.value);
writeLogs(index);
}
}

async function readLogs(){
memoryLog = await fs.readFileSync("..\\memoryLog.log").toString().split

("\n");
registerLog = await fs.readFileSync("..\\registerLog.log").toString().

split("\n");
assemblyLog = await fs.readFileSync("..\\assemblyLog.log").toString().

split("\n");

splitLogs();
}

function splitLogs(){
for(var i = 0; i < memoryLog.length; i++){
memoryLog[i] = memoryLog[i].split(" ");
}
for(var i = 0; i < registerLog.length; i++){
registerLog[i] = registerLog[i].split(" ");
}
drawLogs();

29

}

function drawLogs(){
for(var i = 0; i < memoryLog[0].length; i++){
document.getElementById("memory").innerHTML += ‘<div id=mem${i}></div

>‘;
}
for(var i = 0; i < registerLog[0].length - 1; i++){
document.getElementById("registers").innerHTML += ‘<div id=reg${i}></

div>‘;
}
for(var i = 0; i < assemblyLog.length; i++){
document.getElementById("assembly").innerHTML += ‘<div id=asm${i}></div

>‘;
}
writeLogs(0);
}

function writeLogs(index){
console.log(index);
if(index < 0){
index = 0;
}
else if(index >= memoryLog.length){
index = memoryLog.length-1;
}
for(var i = 0; i < memoryLog[index].length; i++){
document.getElementById(‘mem${i}‘).innerHTML = memoryLog[index][i];
}
for(var i = 0; i < registerLog[index].length - 1; i++){
document.getElementById(‘reg${i}‘).innerHTML = registerLog[index][i];
}
for(var i = 0; i < assemblyLog.length; i++){
document.getElementById(‘asm${i}‘).innerHTML = assemblyLog[i];
if(i == parseInt(document.getElementById("reg15").innerHTML)-1){
document.getElementById(‘asm${i}‘).style.background = "#7289DA";
document.getElementById(‘asm${i}‘).style.color = "#FFFFFF";
}
else{
document.getElementById(‘asm${i}‘).style.background = "none";
document.getElementById(‘asm${i}‘).style.color = "#99AAB5";
}
}
}

A.13 style.css

body{
padding: 0;
margin: 0;
background-color: #23272A;
}

html{
padding: 0;
margin: 0;
}

30

h1{
padding: 0;
margin: 0;
margin-left: 2.5vw;
margin-top: 2.5vh;
height: 5vh;
color: #99AAB5;
font-family: monospace;
}

#memory{
margin-top: 2.5vh;
float: left;
height: 87.5vh;
width: 46.25vw;
margin-right: 2.5vw;
margin-left: 2.5vw;
background-color: #2C2F33;
display: flex;
flex-flow: wrap;
align-content: space-evenly;
overflow-y: scroll;
grid-template-columns: auto auto auto auto auto auto auto auto auto

auto auto auto auto auto auto auto auto auto auto auto auto auto
auto auto auto auto auto auto auto auto auto auto;

grid-template-rows: auto auto auto auto auto auto auto auto auto auto
auto auto auto auto auto auto auto auto auto auto auto auto auto
auto auto auto auto auto auto auto auto auto;

overflow-y: scroll;
}

#registers{
margin-top: 2.5vh;
float: right;
height: 20vh;
width: 46.25vw;
margin-right: 2.5vw;
background-color: #2C2F33;
display: flex;
flex-flow: wrap;
align-content: space-evenly;
overflow-y: scroll;
}

#controls{
background-color: #2C2F33;
float: right;
margin-top: 2.5vh;
height: 65vh;
width: 21.875vw;
}

#controls button{
height: 20%;
width: 100%;
}

31

#assembly{
float: right;
height: 65vh;
width: 21.875vw;
margin-top: 2.5vh;
margin-left: 2.5vw;
margin-right: 2.5vw;
background-color: #2C2F33;
display: grid;
grid-template-columns: auto;
overflow-y: scroll;
justify-content: space-evenly;
align-content: space-evenly;
}

#memory div{
padding: 2px;
color: #99AAB5;
}

#reg15{
background-color: #551111 !important;
}

#reg31{
background-color: #000055 !important;
}

#registers div{
padding: 5px;
margin-left: 1%;
border-radius: 2.5px;
background-color: #23272A;
color: #99AAB5;
}

#assembly div{
color: #99AAB5;
display: block;
float: left;
padding: 5px;
border-radius: 2.5px;
}

A.14 input.txt

MOV #1 #0
MOV #1 #1
MOV #2 #3
STR #0 #1
STR #1 #1
MOV #25 #5
CMP R4 R5
#start
STR R4 R0
ADD R0 R1 #3

32

MOV R1 #0
MOV R3 #1
ADD #1 R4 #4
CMP R4 R5
BNE #start

B Record and Summary of Meetings
Below are listed all meetings that took place as a part of this project, along
with a brief summary of what was discussed and any key decisions that were
made. Unless otherwise stated, all group members were in attendance.

B.1 08/02/2019
Decided to emulate an ARM architecture, will research and choose a specific
chip by Monday and move on to writing proposal. Decided to always have a
demo ready at any point of the project, using Version Control on GitHub.

B.2 11/02/2019
Decided on ARM7TDMI, split the proposal up into sections, meeting again
11:30 on Friday with supervisor. Planned to finish proposal over weekend.

B.3 15/02/2019
Breaking down plan into core and optional objectives, writing register class
and finishing report over weekend make any change on Monday and sent to
supervisor by Tuesday.
Sam and Lokesh did not attend

B.4 18/02/2019
Finished proposal, wrote up plan, finished aims & drew UML diagram of pro-
gram structure. Plan to send final proposal to supervisor later in the day.

B.5 01/03/2019
20 minute meeting, all happy, need to work on communication... Demo due
next week.
Alex, Sam and Lokesh did not attend

B.6 04/03/2019
20 minute meeting, stressed importance of attendance. Meeting again Thursday
1pm to finalise core elements assigned to each team. Went over use of github.
Lokesh did not attend

33

B.7 07/03/2019
2hr meeting - Merged code (with some issues), Dinkie is making demo for to-
morrow, Tasks handed out

B.8 08/03/2019
20 minute meeting, showed Charles progress so far, everyone’s happy Need to
think about how we’re going to show the project off, maybe a log file and a
separate program that displays it visually? Everyone has assigned tasks from
yesterday Meeting again Monday at 4

B.9 11/03/2019
Split off into pairs to discuss work packages:
Alex and Sam - 45 minute meeting
Hayden and Lokesh - 60 minute meeting
Matt and Dinkie - 60 minute meeting

B.10 15/03/2019
20 minute meeting Charles is happy with load/store, recommended using La-
tex for second report, decided on reverse debugger (electron?) Branching and
addressing modes working for next meeting with Charles Matt didn’t attend

B.11 22/03/2019
45 minute meeting Addressing modes given an extra week, Dinkie assigned along
with Lokesh and Hayden First draft report/Latex use, Matt Think about demo
codes (Fibonacci?) Logging of each step in the program (registers at each point,
memory, pc stack, next instruction), Sam, Alex and Hayden did not attend
@Hayden @lokesh Meeting on Monday at 4 to go over addressing modes, if it
doesn’t work by Wednesday, throw more people at it until it does

B.12 29/03/2019
Margin notes in latex, focus on ticking boxes in the CRG Agile vs waterfall
etc. Agile has worked REALLY well for us in terms of needing extra time
for addressing mode and reverse debugger at the end Write a tutorial for the
emulator that the examiner can follow and use the system for dem Find existing
code/tutorials for ARM programming, can they run on our emulator? Recursion
possible?

50 minute meeting Sam not here

34

B.13 05/04/2019
40 minute meeting - Charles is happy still, Need to send Charles final report on
Tuesday, everyone has bits allocated

C Solution Demonstration

Figure 2: State of program after "MOV #25 #5" is run

35

Figure 3: State of program before "MOV #25 #5" is run

Figure 4: Debugger showing the state of registers

36

Figure 5: Debugger showing the state of memory, the user can click to highlight
positions to make keeping track of them easier

Figure 6: Output in debug mode during execution of the Fibonacci example
code, showing branch, add and store instructions in use

37

Figure 7: Fibonacci example code

Figure 8: When hovering over a position in memory, the registers or the assembly
code, the index of that position is displayed in the top right corner

38

Figure 9: Users can step through the code in different ways, including going
forward by either 1, 5 or 10 instructions, or backwards by 1 or 5 instructions at
a time

39

Figure 10: The status register (highlighted in blue) has different bits set after
compare instructions are run. In this case, "CMP #25 #25" was run which set
the Z (zero) flag to true

Figure 11: The program counter (highlighted in red) stores the current position
in the code. It can be modified either directly or through branch instructions
to execute subroutines or loops. The Fibonacci example code uses a for loop,
incrementing register 4 and comparing it to the value in register 5

40

	Introduction
	Project Overview
	Group Process

	Solution design
	Justification of Tools
	Program Structure
	Emulation Vs Simulation

	Evaluation
	Functional Demonstration
	Reflection on Group Process
	Individual Contributions

	Source Code
	ControlUnit.h
	ControlUnit.cpp
	ALU.h
	ALU.cpp
	memory.h
	memory.cpp
	Register.h
	Register.cpp
	maintTest.cpp
	index.html
	main.js
	functions.js
	style.css
	input.txt

	Record and Summary of Meetings
	08/02/2019
	11/02/2019
	15/02/2019
	18/02/2019
	01/03/2019
	04/03/2019
	07/03/2019
	08/03/2019
	11/03/2019
	15/03/2019
	22/03/2019
	29/03/2019
	05/04/2019

	Solution Demonstration

