

Gravitas
Analysis, Design, Testing and Evaluation

Matthew Micklewright

pg. 1

Contents
Analysis ... 3

Background ... 3

Problem ... 3

Users ... 3

Calculation procedure ... 4

System Requirements ... 6

Is there a need for a bespoke system? ... 7

Objectives ... 8

Design .. 10

Potential Solutions .. 10

Navigation Plan ... 11

Form Design .. 12

Input, Process, Storage, Output Tables .. 17

Validation .. 20

Flow chart of running simulation .. 21

Graphic drawing process... 22

Pseudo code .. 22

Check Planet Merging ... 22

Pseudo code .. 22

Sort by Radius ... 23

Example code .. 24

Gravitational attraction Calculation Process .. 25

Worked Example ... 25

Step wise refinement .. 28

Pseudo code .. 29

Saving and Loading ... 31

Outline... 31

Pseudo code .. 31

Event Driven Aspects .. 32

Mouse Down ... 32

Mouse Up .. 33

Mouse Move ... 33

Clear all click .. 34

Play clicked .. 34

Matthew Micklewright

pg. 2

Add planet clicked ... 35

Delete planet clicked ... 35

Information tool click .. 35

Save Button click ... 35

Load Button click ... 35

Show Advanced checkbox changed .. 36

Volatile Storage ... 36

Class Planet ... 36

Global Variables .. 37

Technical Solution ... 38

Testing ... 64

Unit Testing ... 64

Unit testing screenshots ... 71

System Testing .. 118

White Box Testing ... 118

Black Box Testing .. 132

Evaluation ... 134

Self-Evaluation .. 134

User feedback ... 137

Evaluation of feedback.. 138

Matthew Micklewright

pg. 3

Analysis

Background
The Long Eaton School is a specialist science academy and, in particular, has a large focus on

astronomy and astrophysics. The school has its own observatory and offers GCSE astronomy as well

as doing astrophysics as the optional module in the A level physics course. To complement the

excellent facilities there are astrophysics specialists in the science department.

Of course, within the curriculum, students study gravitational forces. In GCSE physics it is mostly

about gravitational attraction however in A level and also the GCSE astronomy it is covered in more

detail looking also at gravitational fields etc.

As well as official teaching in lessons the school hosts several extracurricular astronomy events each

year and has a dedicated astronomy club for students and a society for the wider community. These

make use of the observatory and often have guest speakers and demonstrations on astronomy.

The school observatory also hosts evening when local scout groups etc. visit the observatory and use

the telescope.

To go along with this observation through the telescope the school does a lot of explanation about

gravitational attraction, planet formation and the composition of astronomical bodies. Despite the

need to explain these systems the school lacks a system that they can use to easily explain the

concepts to a wider audience.

Problem
Having spoken with the specialist astrophysics teachers they have asked me to create a way of them

demonstrating the motion of celestial bodies as a result of gravity. What I aim to do is to make

teaching and explaining the effect of gravity simpler by creating a tool that can simulate how

planets, stars etc. move. The purpose of the system is to be educational so it must be intuitive and

easy to use. It must also accurately map the movement of bodies based on the distances between

them and their masses.

Currently teachers can explain motion as a result of gravity by drawing diagrams, sometimes there

are animations but these take time to make and only show one scenario. Another option is, of

course, mathematics, but this takes time and it isn’t very easy to understand if it’s someone’s first

time on the subject.

I aim to eliminate these problems by creating a system that does all of the maths for the user and

then shows them a graphical simulation of what would happen.

Users
As I and the physics teachers see it there are 8 different types of user that this system needs to be

used by:

GCSE Physics students – these students really just need to understand the basic concepts, the tool

would be used as more of a gimmick to get the students interested. For this reason, the program

needs to be easy to use and mostly graphical as if students just want to try to create a little orbit

simulation they don’t want to be messing around working out positions and velocities.

GCSE Astronomy students – the Astronomy students need to understand slightly more about

gravitational fields and in particular how a radial field atracts. In a GCSE astronomy lesson the tool

would still be slightly gimmicky but it is likely that the students would take a deeper interest and

Matthew Micklewright

pg. 4

attempt to create more complex simulations. For this reason, the program needs to have advanced

functionality that is still reasonably clear but is in some way hidden upon initial use.

A level Physics student – these students are likely to be the most advanced users and will be using

the program to its full potential of simulating complex systems with multiple objects and perhaps

trying to demonstrate advanced examples such as binary star systems with Lagrange points. Because

of these advanced needs there needs to be advanced options and a way to see details about a

simulation so as to allow the user to do calculations on planet trajectories etc.

Teachers – A teacher will be using the program primarily as a demonstration tool. They may be

demonstrating a complex system involving multiple objects for A level students or just a simple orbit

for a GCSE student. The teacher has all of the needs of the above three users above, the main

difference is that the teacher will likely be trying to explain the simulation as it goes on so it may be

an idea to have a way of controlling the simulation speed.

Astronomy club – the astronomy club is a group of students who do extracurricular activities

surrounding astronomy and astrophysics. The group could make use of the tool but it would be more

as a fun gimmick than a legitimate tool as the ages of the students tends to be slightly lower, so the

more complex functionality may currently be beyond them.

Astronomy society – the society is more of a wider group of the general public, as well as older

students, who use the school’s facilities and do more advanced activities related to astronomy. The

tool may be something that they wish to play with but the teachers and I decided that this was more

as a gimmick that a proper tool. Nevertheless, it should still have the functionality to satisfy

advanced needs.

Group visits – Often local scout, beaver and other such groups come into the school to use the

observatory. It was suggested that the tool could be used whilst students were waiting to use the

telescope, or as a secondary activity to fill time. Again, the tool would be playing a role more as an

interesting gimmick than a legitimate tool.

Open evenings – these evenings, for example stargazing live, involve a wide community outreach

where students are invited to bring their friends and family to see demonstrations and talks about

astronomy. The evenings usually involve guest speakers and exhibits around the school and

observatory and the teachers have suggested that have a small tool to exhibit the motion of objects

as a result of gravity may be something interesting for people to play with whilst they wait to use the

telescope or whilst they are looking around the school.

The A level physicists need an accurate but also customizable model with lots of data input and

output. However, at the other end of the spectrum the GCSE physicists need a much simpler and

more graphical solution. Because of these varied needs I will have to consider how I exhibit data and

how the user inputs and receives outputs from the system.

Although there is a variety in the needs of the users I think that it is possible to deliver a solution

that is acceptable to all.

Calculation procedure
Given the inputs of the masses and locations in space of several objects it should be possible to

calculate their movements. It is important to note that this will be calculated in a Newtonian

manner, meaning that all laws of general relativity are ignored and the speed of Light and the speed

Matthew Micklewright

pg. 5

at which gravitational forces take effect is infinite. Doing it this way is not completely accurate, but

on the scale of our solar system the differences are negligible to the extent that when calculating

orbital paths for satellites and craft in space companies almost always use Newtonian gravity.

Gravitational Force

With the mass of the planets known it is now possible to use newton’s equation to calculate the

gravitational force of attraction:

𝐹 =
𝑚1𝑚1𝐺

𝑟2

G = Gravitational constant = 6.6740831313131x10-11N m2/kg2

m = mass of planets 1 and 2

r = Distance which will be calculated in the following way:

Distance calculations

At multiple points in the program I will

need to find the distance between

two points, for this I will simply use

Pythagoras’s theorem as I will have

the X and Y positions of both objects

and will therefore be able to find the

difference in the X and Y.

Displacements

With the force known I now need to know the displacement of the planet. This will be found using

SUVAT. By substituting F = ma into one of the SUVAT equations (as shown in the following image)

the displacement can be found.

Matthew Micklewright

pg. 6

However, it’s not as simple as that, as well as the scalar quantity of distance I also need to know

what direction the planet should go. For this I need to break the planet’s motion down into the X

and Y. The following image shows how the force will be split into an X and a Y component:

Firstly, the distance between the planets (d) is found. Then, the angle theta can be calculated by

using the sine rule.

Now that theta is known we can draw the same right angled triangle containing planets A and B but

instead of distance the lengths of this triangle represent force. The total force (hypotenuse) is found

using the formula as discussed earlier (see Gravitational Force).

Again, by using the sine rule a value can be found for the horizontal force. As the sine and inverse

sine cancel we see that force multiplied by the distance of that side, divided by the length of the

hypotenuse gives the force of the horizontal.

The vertical force could also be found in this way or by using Pythagoras’ theorem as is done in the

image

The final thing to do is to substitute my values into the equation that was found earlier:

𝑆 = 𝑢 + 𝐹(2𝑚)−1

Now, I should have a displacement in X and Y which can be added to the planets current coordinates

to update its location.

System Requirements
These are the things that the final solution should include:

-Have an animated GUI showing the moving bodies

-Change Mass of the bodies by changing the density and radius

-Have an initial velocity system, this will allow the users to create orbits easily by providing a

perpendicular velocity to the pull of gravity.

-Change colour of bodies to easily identify the different bodies that the user creates.

Matthew Micklewright

pg. 7

-Clear and intuitive user interface for first time users, the program is designed to educate so it is

important that the solution is intuitive and first time users are not put off by a long-winded manual

and confusing controls.

-Have the majority of inputs performed graphically so that it is easy for the user to understand the

forces acting on the planet.

-Have an option to save simulations and also to load them later

-Have advanced functionality that allows advanced users to create more complex models, however

this should not interfere with the simple user interface for the majority of users.

Is there a need for a bespoke system?
In this section I’m going to talk about some off the shelf programs and go through the advantages

and disadvantages of using them. Then I will summarise what the best solution is and if I think that

none of the below are appropriate, whether it is necessary to create my own solution.

Grav-Sim

This is the overarching name for three different simulators: FastSim, GravSim and FineSim. FastSim is

the lightweight version and FineSim the highly accurate and detailed version, GravSim is something

of a middle ground. All three programs are free and available via the internet. The advantage of

these programs is that there is a variety in the detail and complexity that the user may wish to

peruse, however the issue is that these programs are all console based. That is fine for advanced

users who are more looking for the data retrieval aspect but it’s not very useful for a first time user.

It would be intimidating and too complicated, users would likely not know what the different values

meant and it would make them not want to use the program.

One advantage of it, however, is that it does model in three dimensions which most of these

solutions do not. However that is not a must have and would likely confuse less adept users.

Gravity Simulator – Test Tube Games

www.testtubegames.com/gravity.html

The main issue with this is that it is on a games website and so is blocked on the school system. The

school could unblock the site but this would give access to other games. As well as this it requires

flash which means that the system admins have to make sure it is constantly up to date. This would

be a waste of time.

Newtonian Gravity Simulator - Sympatico

http://www3.sympatico.ca/michael.enns/

This is an excellent website which provides a very good simulator. It runs well on the school system

and contains no adverts that might make it inappropriate for use by students. The way that it creates

models however is not exactly what the physics faculty are looking for. This program works by

having specific models. The user can alter the mass, x position, y position and velocities by editing

text but I don’t think it would be a very easy to use system for someone that is very new to the idea

of velocity and vectors. As well as this, the user cannot create an entirely original model. They can

only create a random simulation that does have a rather impressive number of objects but having

spoken to the physics department they are looking for something more programmable by the user.

To summarise the options above; these three examples represent a wide range of solutions but they

all have similar flaws.

http://www.testtubegames.com/gravity.html
http://www3.sympatico.ca/michael.enns/

Matthew Micklewright

pg. 8

The ‘game’ style programs such as the first example listed above often have inappropriate adverts

and are often blocked on the school system. As well as this they usual require flash or java which I

cannot be sure will be up to date on the school system. These solutions also fall down on the ability

of the user to save their simulations.

The second style of program seems to be a tool for a professional they clearly require more

processing power as they often run locally on the computer as a standalone program rather than the

flash based websites such as in the first set I talked about. These programs lack the accessible

graphical user interface that is a primary need for younger students but they are highly customisable

and usually model in 3D or handle more advanced simulations more easily as this is what they are

designed to do; GravSim, for example will easily handle 10000 objects at a time. Simulators that

have the functionality of these more advanced programs but also a graphical user interface usually

require reasonably high spec computers to run all of the graphic calculations or cost a reasonable fee

themselves. Anything that costs money is pretty much ruled out from the list of options as the

physics department are looking for a free solution.

While there are middle grounds between these two, such as the third program that I have discussed

above there are usually issues with it such as a lack of customizability or cost. For this reason, I think

that there needs to be a bespoke system created that is going to fit the needs of the physics

department. Otherwise they will end up with a solution that falls short of some of their primary

needs which will lead to either a lack of use or a poor quality of teaching from the staff using it and a

low understanding of the students.

Objectives
System Objectives

Have a smooth animation that does not flash and is not stop start

Allow the user to create and delete planets on the screen

Have a pause and play mode so that the user can edit their model and then play it to see what

happens

Have most of the functionality in one window so that the user is not confused by many different

forms opening and closing.

Processing Objectives

Map the movement of, at least, of five bodies

Allow the user to define an initial velocity for a body that will be stored as a vector

Realistically mimic movement due to gravity of the bodies

Resolve a minimum of six forces into one vector

Calculate mass from density and radius for each planet

User Objectives

Allow the user to alter the radius, density and colour of a planet

All text boxes, buttons etc. should be clearly labelled to make it intuitive

Matthew Micklewright

pg. 9

Allow the user to delete one planet at a time

Allow the user to delete the entire simulation at once

Have an additional advanced menu for more knowledgeable users, this should not intrude on the

base UI.

Matthew Micklewright

pg. 10

Design

Potential Solutions
C++

C++ is reasonably good for graphics and it is definitely possible to create a program with the 2D

graphics I intend to have. However, I have no experience with C++ and it is not very similar to the

language that I am most familiar with, VB.net. It would take a long time to learn C++ because of its

dissimilarity. I get the impression from various tutorials that it is quite a difficult language to learn,

one video tutorial had almost 40 episodes before it reached the sort of level of graphic complexity

that I will be going for.

That said C++ is a popular language and there is a good deal of high quality free support available. It

also uses the visual studio IDE like VB.Net, which means that I do not have to go out and find a new

piece of software.

Java
Java is not a very intuitive language and it would definitely take a lot of time for me to get used to it,

as I’ve no experience with it.

Java is however portable because of the Java virtual machine but this is not a necessity for the

school as they only use windows. As I understand it the graphic abilities are there but difficult to

access as there is no graphical user interface with the IDE like there is in visual studio for VB.net and

C#. Another key point to consider is that Java is frequently updated and so it would be up to the

system administrators to keep the virtual machine up to date.

Flash

Flash is likely not in depth enough for what I want to do, the system needs to be highly customizable

for each user which may be doable with flash but it needs to be an intuitive design which flash

probably would not allow.

It is also reasonably expensive, however it is already on the school system therefore that problem is

somewhat overcome. In terms of compatibility it would be able to work on mac and PC as there is a

version of flash for both, however, again this is not a huge issue as the school system is windows

only.

VB.Net

The main selling point of VB.net is that I have a lot of experience with it compared to any other

language. I have used it frequently for the past year and I am very familiar with it. I don’t have that

much experience with using the graphics library however, I have written a few programs and I think

that I know enough to make the program work. It is also very easy to create windows form

applications in visual studio. The other advantage of VB.Net is that it is very widely used and so there

is a lot of free support. The only slight disadvantage that I can see with using VB.Net is that it isn’t

portable to other operating systems but seeing as the school use windows exclusively that isn’t

particularly an issue.

Another issue that I may have is that vb.net is not designed to be write frequently updating graphical

programs so I may find that I have issues with jumpy animation or lag. Another large advantage of

VB.net is that it is an object oriented language which works well with event driven programs. It is

likely that my program will work in these ways and so it may be a good idea to use VB.net which

works well with these sorts of systems.

Matthew Micklewright

pg. 11

Python/Pygame

Pygame is a set of libraries for python that can be used to create video games; it includes

functionality for graphical user interfaces. I have experience using python but, as I understand it,

Pygame is a reasonably extensive add on to python meaning there could be a good deal of new

syntax to learn. Although it would not be like learning a language from scratch it wouldn’t be as easy

as if I used VB.net which I already know and am confident with.

The main advantage of Pygame is that it’s running on a very lightweight base which means that it is

quite responsive unlike something like VB.net that isn’t inherently designed to run a fast updating

graphics program.

Processing

Processing is not commonly used; it was built for the electronic arts new media art and visual design

communities. It is designed to be an easy to learn first time language with an emphasis on graphical

programs. It builds on Java but has simplified syntax as well as a graphics user interface. Because of

all of these things it would probably not take me as long to learn as some other languages. In

addition, the fact that it is intended to be used to create graphics is exactly the sort of thing I would

need.

The main disadvantage is that it is not a very widely used language and I will struggle therefore to

find the sort of support that I would get from a more widely used language such as VB.net.

Processing is free and open source but I would have to find and download the IDE etc.

C#

Although I do not know C# it is very similar to VB.net which I have a lot of experience with, it would

therefore probably be the easiest program, of those that I don’t already know, to use. The graphics

on C# are very good and easily accessible due to the drag and drop style IDE in visual studio.

Disadvantages to C# are that it is interpreted and so is less efficient than C++ for example. It also has

very poor compatibility with anything other than windows due to its integration with .Net. This

however is not an enormous issue, as I have said, because the program need only work on the

windows based school system.

My choice:

For me the best tool to use seems to be VB.Net, the graphics properties that it does have are more

than capable of doing what I need and I am already very familiar with it and its graphics library so

once I have designed the program I can immediately get to work on it.

Navigation Plan
Most of my program will operate out of one form to keep it clear to the user where they need to be

looking and to be clear about how they affect things on the screen. I think that if users are searching

through different forms looking for an option they are going to be less inclined to play around with

the model in a light-hearted way as I and the physics teachers want. This program needs to be

lightweight and playful but also packed full of useful features for more advanced users.

The program will open into the Canvass window and the only deviations from this will be in using the

load and save buttons, which will open file explorer windows so that users can decide where they

want to save their simulations or where they wish to load their simulation from.

Matthew Micklewright

pg. 12

Form Design
My initial plan for the form is to have a black canvas to the left which the user can interact and draw

on by clicking on it. On the right hand side of the screen I want to have a tool bar with various

options and controls for the simulation and also what happens when they click on the canvas e.g.

create a planet, delete a planet.

The program is going to work by having two different modes, the first will be the paused mode

which will be as shown below, all buttons will be usable and the user can add and delete objects to

the canvas. The second mode will be the running mode, in this mode all of the buttons will be

disabled apart from the pause/ play button and the clear all button. The objects on the canvas will

be animated but the user will not be allowed to add more objects or delete them without pausing

the simulation.

The Advanced tab will be shown or hidden by the use of the show advanced checkbox. If it is ticked,

then the advanced tab will show if it is not ticked then it will be hidden. This is to reduce visual

complexity when the user first starts the program as, I feel, that if a user launches the program for

the first time and is confronted by a wall of different options they may feel overwhelmed. This way

advanced users can access the features that they want but they are hidden from sight for the users

that do not require them.

Without advanced tab:

Matthew Micklewright

pg. 13

With Advanced Tab:

Within the paused mode of the program there will be a few more options that affect the way the

program acts. For example, having different tools selected will change what happens when the user

clicks on the canvas.

The add planet tool will allow the user to create a planet when they click on the canvas, the details

for the planet that is created will come from the textboxes and combo box on the right hand side of

the screen. The delete planet tool will delete a planet on the canvas if it is clicked on, finally, the

information tool will give details of a clicked on planet in the advanced tab (if it is showing).

As well as the show advanced check box there are two other check boxes, trace planets and merge.

Ticking trace planets will mean that when the simulation is running a solid line will be drawn behind

the planet to show its motions. The merge checkbox is also for the running simulation only and if it is

ticked then when two planets touch each other they will become one planet. Although this is not the

most realistic version of an astronomical collision it does allow the user to see how objects may start

to clump together in a large gas cloud for example.

Matthew Micklewright

pg. 14

Buttons with brief outline of purposes

This is just a brief outline of what the buttons will do, a more in depth description will follow in the

IPSO table

Matthew Micklewright

pg. 15

Tools in the paused mode

I always want it to be very clear which tool the user has selected at any given time, I intend to do this

by disabling or ‘greying out’ the button. This should clearly demonstrate to the user that they have

that button selected and so cannot re-select it, it also makes their other two options stand out more

clearly.

In a similar vein, I want the three tool buttons as well as the save and load buttons to be disabled

when the simulation is playing. This is because the user cannot use them whilst the simulation is

running, if it were to work that the user could click on the button and nothing would happen I think

it would lead to confusion and frustration as to why the program did not appear to be working

properly. However, by having the buttons disabled the user can see that it is an obvious design

choice for these buttons to be useless in the programs current state.

Form Initialisation

When the above form fist loads there will be pre-given values in the radius, density and colour

boxes, the program will also start with the add planet tool selected. This means that the user will

immediately be able to start clicking on the canvas to create a simulation without having to look at

the menu bar on the right.

The initial value for radius and density will be 20 and 5 respectively and the initial colour will be

Grey. There is little reason for these values other than they are reasonably low which will probably

make it easier to create a complex simulation than if the user started off with very high values.

Matthew Micklewright

pg. 16

Save and Load Dialogue

Load:

Save:

Matthew Micklewright

pg. 17

Input, Process, Storage, Output Tables
For Canvas

Input Process Storage Output

Add Planet Button
Clicked

 -Disable Add planet
button
-Enable delete planet
button
-Change cursor to
cross

Delete planet button
clicked

 -Disable delete planet
button
-Enable add planet
button
-Change cursor to
hand

Play button clicked
(where play button
text = pause)

Stop simulation -enable delete planet
button
-enable add planet
button
-enable save
simulation button
-enable load
simulation button
- select information
tool

Play button clicked
(where play button
text = play)

Start simulation
(see running
simulation flowchart)

 -Disable delete planet
button
-disable add planet
button
-disable load button
-disable save button
-disable information
tool

Clear all clicked Are you sure message
If yes:
-Stop simulation
-delete all planets
-redraw graphics
If no:
Continue running
simulation

 Are you sure message
If yes:
enable delete planet
button
-enable add planet
button
-enable save
simulation button
-enable load
simulation button
-disable information
tool

Save simulation
clicked

 Show save simulation
dialogue

Matthew Micklewright

pg. 18

Load simulation
clicked

 Show load simulation
dialogue

Trace planets checked If simulation is
running:
Continue with
simulation but do not
clear canvas on draw
graphics

Trace planets
unchecked

If simulation running:
Clear the canvas when
redrawing planets

Merge checked If simulation is
running:
Check if planets merge
after calculating new
positions

Merge unchecked If simulation is
running:
Stop checking if
planets should merge

Show advanced
checked

 Show advanced panel
If simulation is not
running:
Select the information
tool

Show advanced
unchecked

 hide advanced panel
If simulation is not
running:
Select the add planet
tool

Numeric up down
changed

If simulation is
running:
Change speed to
speed in numeric up
down

The following are all different variations on the state of the program when the user clicks on the

canvas. If a variation is not listed (such as a click with add planet whilst the simulation is running)

then it is because it is not possible (in this case because the add planet tool is disabled on simulation

start) or because it falls into another event.

Click on canvas events where:

Condition Process Storage Output

Simulation paused
and Add planet
selected

Create a planet with
radius and density
specified in textboxes
on the right and with

 Update graphics with
this new planet

Matthew Micklewright

pg. 19

a centre around the
mouse click

Simulation paused
and information
selected and clicked
on planet

Put details of that
planet in the
advanced tab

 Draw ring around
selected planet

Simulation paused
and delete planet
selected and clicked
on planet

Delete clicked on
planet

 Update graphics

Simulation paused
and information
selected and not
clicked on planet

 Update graphics to
remove a selection
ring if one has been
drawn
Clear advanced tab

Other mouse events

Many of the main inputs when creating a simulation will come via different mouse actions using the

add planet tool. Clicking on a planet will draw it on the canvas with the initially specified radius and

density (and of course location as the place the user has clicked) however the initial velocity will be

indicated by the user dragging the mouse in the opposite direction of travel.

Doing so will draw a line from the centre of the created planet to the new position of the cursor, the

length of this line will specify the magnitude of the vector and the direction will be the opposite of

the direction the planet will travel, this is because I want to have a slingshot effect. The user should

think of it like pulling back a piece of elastic so that when it is released the planet will fly off in the

opposite direction to which the planet is pulled. The velocity is finalised when the user lifts up the

mouse button.

By adding planets in this graphical manner, the user can very quickly build up a complex model

without having to understand much about mechanics. All they have to understand is the reasonably

intuitive concept that if you pull a piece of elastic one way then it will fly the other when released.

(The reason that these are not listed in the IPSO tables is that I felt it was too complex a set of

conditions to easily be put into a table)

For Save Simulation Dialogue

Input Process Storage Output

Save clicked Save simulation with
file name given as text
file

Write to text file with
name given:
Simulation data

For Load Simulation Dialogue

Input Process Storage Output

Load clicked Load simulation with
file name given as text
file

Read from text file Draw simulation on
canvas

Matthew Micklewright

pg. 20

Validation
The main text inputs are the radius and density, for that reason these must have validation to

prevent the user entering text etc. The Radius will be checked to ensure that it is an integer in the

range 1 to 120 and the density will be checked to make sure it is an integer in the range 1 to 1000.

Other inputs are the simulation speed which will be a numeric up down counter, this will be limited

to a range of 0 to 10 and the counter itself should have inbuilt validation to prevent the entry of a

non-integer.

Another input is the colour combo box but that too has inbuilt validation in that the user can only

select a preapproved input.

Matthew Micklewright

pg. 21

Flow chart of running simulation
As the main procedural part of the program, this is how the actual running of the simulation will

work. In the following sections, I break down the different sub routines that are referred to here

(e.g. Draw Graphics).

Merge Sort by Radius

Start

Draw Graphics

Check Merge

Calculate Forces

Merge

Checked?

No

Yes

Matthew Micklewright

pg. 22

Graphic drawing process
This section will discuss what will happen during the ‘Draw Graphics’ stage of the flowchart above.

The graphics will work by having the canvas as a graphics object, drawing graphics will cause the

canvas to be cleared black and then all of the current planets will be drawn on the canvas.

Pseudo code
CLEAR Canvas

FOR ALL Planets:

 IF Planet.InUse = TRUE:

 DRAW ELIPSE ON CANVAS(CENTRE = (planets(n).X, planets(n).Y), RADIUS =

planets(n).radius, FILLCOLOUR = planets(n).colour)

 END IF

END FOR

Check Planet Merging
In reality when two planets get close together and collide some of them will fuse and some of them

will be ejected, however as the user is not looking for an incredibly true to reality version they simply

want an option to have the two planets stick together when they touch.

To do this I will be checking for every planet, how close they are together and if they are close

enough then the new planets density and radius will be calculated from the two parent planets.

In this, I will also be making sure that momentum and kinetic energy are conserved as this is an

elastic collision.

Pseudo code
For every planet
 if planet.inuse = true then
 For every other Pln
 if pln.X > (planet.x – planet.radius) AND pln.Y > (planet.Y – planet.radius)
 Planet.InitialXVel = ((planet.InitialVelocity.Xcomp * planet.mass) +
(pln.InitialVelocity.Xcomp * pln.mass)) / (planet.mass + pln.mass)
 Planet.InitialYvel = ((planet.InitialVelocity.Ycomp * planet.mass) +
(pln.InitialVelocity.Ycomp * pln.mass)) / (planet.mass + pln.mass)
 Planet.Radius = planet.radius + pln.radius
 Planet.density =(planet.mass + pln.mass) / ((4 / 3) * Math.PI *
Math.Pow(planet.Radius, 3))
 pln.InUse = False
 pln.Radius = Nothing
 pln.Density = Nothing
 pln.Xposition = Nothing
 pln.Yposition = Nothing

 End if

 End For

 End if

End For

The above code will find out if two planets, pln and planet, are close enough that they must merge

by seeing whether the centre of one planet is within the radius of the other. If so, the new radius for

Matthew Micklewright

pg. 23

this combined planet is the two radii added together and the velocity is calculated by taking the

momentum of the two planets, adding them together, and then dividing by their masses to get the

resultant velocity:

𝜌 = 𝑚𝑣

𝑣 =
(𝑚1𝑣1) + (𝑚2𝑣2)

(𝑚1+𝑚2)

Sort by Radius
As my screen will have to cleared black and redrawn every cycle there is a possibility that the screen

will flicker slightly if the simulation is being asked to run too quickly. The reason that a picture

flickers is that it is redrawing the image a very short time after it has been originally drawn. To

reduce this potential flicker, I will be sorting the planets in ascending order by radius. This means

that the largest objects on the screen will be drawn first and so the flickering will occur mostly on

the small objects. Whilst this is not ideal it will be less noticeable than having a flicker on the largest

objects.

To sort the planets I will be using a merge sort, the planets will be sorted by radius so that the

planets are drawn in decreasing order of size.

To begin with, the merge sort algorithm has two key steps:

• Divide – this is where an array with length greater than one is split in two, this process is

repeated until all of the sub-arrays are of size 1

• Conquer – The sub-arrays are compared and the values sorted until all of the values are back

in one array and are now all in the correct order

If we have an array with values (56, 3, 19, 37, 3, 24, 55) then it will be sorted in the following way:

The original array is broken down into arrays of size one (H, I, J, K etc.) and then these are put back

together in increasing order.

 Array A = (56, 3, 19, 37, 3, 24, 55, 11)

 Array B = (56, 3, 19, 37) Array C = (3, 24, 55, 11)

Array D = (56, 3) Array E = (19, 37) Array F = (3, 24) Array G = (55, 11)

H=(56) I=(3) J=(19) K=(37) L=(3) M=(24) N=(55) O=(11)

D = (3, 56) E = (19, 37) F = (3, 24) G = (11, 55)

 B = (3, 19, 37, 56) C = (3, 11, 24, 55)

 A = (3, 3, 11, 19, 24, 37, 55, 56)

Matthew Micklewright

pg. 24

Example code
This VB code is some that I developed for a different project but it follows the same logic as the

above explanation. The array is broken down into sub arrays of size 1 and then put back together in

descending order.

Public Sub MergeSort(ByVal ar() As Integer)
 DoMergeSort(ar, 0, ar.Length - 1)
 End Sub

 Private Sub DoMergeSort(ByVal array() As Integer, ByVal Min As Integer, ByVal Max
As Integer)
 If Min >= Max Then
 Return
 End If
 Dim length As Integer = Max - Min + 1
 Dim middle As Integer = Math.Floor((Min + Max) / 2)
 DoMergeSort(array, Min, middle)
 DoMergeSort(array, middle + 1, Max)
 Dim temp(array.Length - 1) As Integer
 For i As Integer = 0 To length - 1
 temp(i) = array(Min + i)
 Next
 Dim m1 As Integer = 0
 Dim m2 As Integer = middle - Min + 1
 For i As Integer = 0 To length - 1
 If m2 <= Max - Min Then
 If m1 <= middle - Min Then
 If temp(m1) > temp(m2) Then
 array(i + Min) = temp(m2)
 m2 += 1
 Else
 array(i + Min) = temp(m1)
 m1 += 1
 End If
 Else
 array(i + Min) = temp(m2)
 m2 += 1
 End If
 Else
 array(i + Min) = temp(m1)
 m1 += 1
 End If
 Next
End Sub

I put this code into a simple console application and setup the array with the numbers from the

example above, this was the given output:

The only extra thing that needs to be done in the final program is to rematch each planet with it’s

radius in the now sorted array.

Matthew Micklewright

pg. 25

Gravitational attraction Calculation Process

Worked Example
This is a worked example of the calculation process that I explained in my analysis section. It

demonstrates how a human would work through calculating a planet’s new position.

Volume:

Planet1= 4/3*π* radius^3

Planet1= 4π/3 * 29^3

Planet1= 102160.4𝑚3

Planet2= = 4/3*π* radius^3

Planet2= 4π/3 * 50^3

Planet2= 523598.8𝑚3

Mass:

Planet1= Volume * density

Planet1= 102160.4 * 10

Planet1= 1021604

Planet2= Volume * density

Planet2= 523598.8* 12

Planet2= 6283185

-600 -400 -200 0 200 400 600

-800

-600

-400

-200

0

200

400

600

Planet1

Radius = 29

Density = 10

X Position = 45

Y Position = -563

Initial X Velocity = 23

Initial Y Velocity = 1

Planet2

Radius = 50

Density = 12

X Position = -76

Y Position = 126

Initial X Velocity = 6

Initial Y Velocity = -15

Matthew Micklewright

pg. 26

Distance:

distance = sqrt((Planet1 X position – Planet2 X position)^2 + (Planet1 Y position –

Planet2Yposition)^2)

Distance = sqrt((45 - -76)^2) + (-536 – 126)^2)

Distance = sqrt(121^2 + -662^2)

Distance = sqrt(14641+438244)

Distance = 672.967

Force:

Force = (Planet1Mass * Planet2 Mass * Gravitational contant) / distance^2

Force = (1021604 * 6283185 * 6.67x10^-11) / 672.97^2

Force = 9.45x10^-4

Horizontal Force:

Planet1 Horizontal force = Force * ((Planet1 X position – Planet2 X position) / Total Distance)

Planet1 Horizontal force = 9.45x10^-4 * (45 - -76) / 672.967)

Planet1 Horizontal force = 1.699x10^-4

Planet2 Horizontal force = Force * ((Planet1 X position – Planet2 X position) / Total Distance)

Planet2 Horizontal force = 9.45x10^-4 * (45 - -76) / 672.967)

Planet2 Horizontal force = 1.699x10^-4

Vertical Force:

Planet1 Vertical force = sqrt(force^2 – Planet1 horizontal force ^ 2)

Planet1 Vertical force = sqrt((9.45x10^-4)^2 – (1.699x10^-4)^2)

Planet1 Vertical force = 9.296x10^-4

Planet2 Vertical force = sqrt(force^2 – Planet2 horizontal force ^ 2)

Planet2 Vertical force = sqrt((9.45x10^-4)^2 – (1.699x10^-4)^2)

Planet2 Vertical force = 9.296x10^-4

Displacements:

Horizontal displacement

Planet1 Horizontal displacement = Planet1 initial X velocity + (Planet1 horizontal force / (2 * Planet1

mass)

Planet1 Horizontal displacement = 23 + (1.699x10^-4 / 2)

Planet1 Horizontal displacement = 23.00008495

Planet2 Horizontal displacement = Planet2 initial X velocity + (Planet2 horizontal force / (2 * Planet2

mass)

Planet2 Horizontal displacement = 6 + (1.699x10^-4 / (2* 6283185)

Planet2 Horizontal displacement = 6

Vertical displacement

Planet1 vertical displacement = Planet1 initial Y velocity + (Planet1 vertical force / (2 * Planet1 mass)

Planet1 vertical displacement = 1 + (9.296x10^-4/ (2 * 1021604)

Planet1 vertical displacement = 1

Planet2 vertical displacement = Planet2 initial Y velocity + (Planet2 vertical force / (2 * Planet2 mass)

Planet2 vertical displacement = -15 + (9.296x10^-4/ (2 * 6283185)

Matthew Micklewright

pg. 27

Planet2 vertical displacement = -15

Update positions + initial velocity update

Planet1 X position + Planet1 horizontal displacement

45 + 23.00008495 = 68.00008495

Planet1 Y position + Planet1 vertical displacement

-563 + 1 = -562

Planet2 X position + Planet2 horizontal displacement

-76 + 6 = -70

Planet2 Y position + Planet2 vertical displacement

126 – 15 = 111

Planet1 Initial X velocity = Planet1 horizontal displacement

= 23.00008495

Planet1 Initial Y velocity = Planet1 vertical displacement

= 1

Planet2 Initial X velocity = Planet2 horizontal displacement

= 6

Planet2 Initial Y velocity = Planet2 vertical displacement

= -15

Before: After:

-600 -400 -200 0 200 400 600

-800

-600

-400

-200

0

200

400

600

Planet1

Radius = 29

Density = 10

X Position =68.00008495

Y Position = -562

Initial X Velocity = 23.00008495

Initial Y Velocity = 1

Planet2

Radius = 50

Density = 12

X Position = -70

Y Position = 111

Initial X Velocity = 6

Initial Y Velocity = -15

-600 -400 -200 0 200 400 600

-800

-600

-400

-200

0

200

400

600

Matthew Micklewright

pg. 28

Step wise refinement
This process is how the program will find the new position of a planet as a result of movement from

gravitational attraction. In the program it will run the following algorithm for every planet in the

simulation.

Level 0 Calculate new position of planet

Level 1 1: Find force

2: Find Horizontal Force Component

3: Find Vertical Force Component

4: Calculate Horizontal displacement

5: Calculate Vertical displacement

6: change planets location

Level 2 1.1: Find Distance

1.2: Calculate total force value

2.1: Horizontal force = Force * (X-distance / Total Distance)

3.1: Vertical Force = √𝐹2 − 𝐹𝑉
2

4.1: Horizontal Displacement = initial Velocity + (Horizontal Force/(2 * mass))

5.1: Horizontal Displacement = initial Velocity + (Vertical Force/(2 * mass))

6.1: X position = X Position + Horizontal Displacement

6.2: Y position = Y Position + Vertical Displacement

Level 3 1.1.1: Distance = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

1.2.1: Force =
𝑚1𝑚1𝐺

𝑟2

Matthew Micklewright

pg. 29

Pseudo code
Mass calculations

This will be used to calculate a mass for a planet. This will be a function in the class planet.

Function GetVolume(Planet)

Vol = (4/3) * Pi * (Planet.radius * Planet.radius * Planet.radius)

Return vol

End Function

Function GetMass(Planet)

 Mass = Planet.density * GetVolume(Planet)

 Return mass

End function

Gravitational Force

The gravitational force is calculated in the following way; this is necessary for calculating the new

position of a planet.

GravConst = 0.0000000000667

Force = GravConst * GetMass(Planet1) * GetMass(Planet2)

Force = GravConst / (GetDistance(planet1,planet2) * GetDistance(planet1,planet2))

Distance calculations

Function GetDistance(Planet1, Planet2)

 Distance = (Planet1.X – Planet2.X) * (Planet1.X – Planet2.X)

 Distance = Distance + ((Planet1.Y – Planet2.Y) * (Planet1.Y – Planet2.Y))

 Distance = Sqrt(Distance)

 Return Distance

End function

Matthew Micklewright

pg. 30

Full Calculation Pseudo Code

In the program the calculation process will take place in one sub routine. This will calculate an

overall vector for each planet and then move the planet appropriately.

n = 0

WHILE n != NumberOfPlanets:

 k = 0

 WHILE planet(n) != planet(k):

 distance = SQRT(POW((planet(k).x – planet(n).x),2) + POW((planet(k).y –

planet(n).y),2))

 force = planet(n).mass * planet(k).mass * GravitationalConstant

 force = force / (distance * distance)

 forceHorizontal = force * ((ABS(planets(k).x - planets(n).x) / Total Distance)

 forceVertical = SQRT((force*force) – (forceHorizontal*forceHorizontal))

 planets(n).displacements(k).xchange = planets(n).InitialVelocity + (forceHorizontal

/(2*planets(n).mass))

 planets(n).verticalDisplacement = planets(n).InitialVelocity +

(forceVertical/(2*planets(n).mass))

 IF planets(n).X > planets(k).x THEN

 planets(n).displacements(k).xdirection = “+”

 ELSE

 planets(n).displacements(k).xdirection = “-“

 IF planets(n).y > planets(k).y THEN

 planets(n).displacements(k).ydirection = “+”

 ELSE

 planets(n).displacements(k).ydirection = “-“

 END IF

 END WHILE

END WHILE

FOR ALL Planets:

 FOR ALL VALUES OF k:

 IF planets(n).displacement(k).xdirection = “+” THEN

 totalX = totalX + planets(n).displacemtns(k)

 ELSE

 totalX =totalX – planets(n).displacements(k).Xchange

 IF planets(n).displacement(k).ydirection = “+” THEN

 totalY = totalY + planets(n).displacemtns(k)

 ELSE

 totalY =totalY – planets(n).displacements(k).Ychange

 END FOR

END FOR

Matthew Micklewright

pg. 31

Saving and Loading

Outline
The saving and loading will work by using an open file dialog and a save file dialog when the user

clicks the load of save buttons, respectively. What these objects do is open the file explorer window.

I can then access the windows properties to find out what the user is doing and therefore which file

they wish to open. The reading/ writing to text files will be done using stream reader and stream

writer.

Pseudo code
Pseudo code for saving Process:

In the subroutine below path is passed from a previous procedure. This would be the file path that

has come from the open file dialog.

 Sub SaveSim(Path)

 Path

 writer = New IO.StreamWriter(Path)

 For Each planet In planets

 If planet.InUse = True Then

 writer.WriteLine(planet.Radius)

 writer.WriteLine(planet.Density)

 writer.WriteLine(planet.Colour)

 writer.WriteLine(planet.Xposition)

 writer.WriteLine(planet.Yposition)

 writer.WriteLine(planet.InitialVelocity.Xcomp)

 writer.WriteLine(planet.InitialVelocity.Ycomp)

 End If

 Next

 End Sub

Pseudo code for loading Process:

The subroutine simply opens a new file and writes out the data for each planet that is currently in

use.

Sub LoadSim(path)

 ClearPlanets()

 reader = New IO.StreamReader(path)

 textLine = reader.ReadLine()

 Do Until textLine = Nothing

 For Each planet In planets

 If planet.InUse = False Then

 planet.Radius = textLine

 planet.Density = reader.ReadLine()

 planet.Colour = reader.ReadLine()

 planet.Xposition = reader.ReadLine()

 planet.Yposition = reader.ReadLine()

Matthew Micklewright

pg. 32

 planet.InitialVelocity.Xcomp = reader.ReadLine()

 planet.InitialVelocity.Ycomp = reader.ReadLine()

 planet.InUse = True

 Exit For

 End If

 Next

 textLine = reader.ReadLine()

 Loop

 DrawGraphics()

End sub

In this pseudo code the procedure ClearPlanets() simply clears out every planet from the array. This

is used so that a model is not loaded on top of a model that is currently in use. The DrawGraphics()

subroutine simply updates the simulation graphics.

Event Driven Aspects
Much of the program works in an event driven manner with the program remaining in a waiting

state until the user performs an action such as a button click, the program then executes the code

that it has for this action before again waiting for another input.

In this section, I will explain how I intend to code some of the more complex areas of this side of the

program and will supply pseudo code where necessary.

Mouse Down
IF addCursor = TRUE THEN

 FOR n = 0 TO 20

 IF Planets(n).InUse = FALSE THEN

 planets(n).Radius = TextBoxRadius.text

 planets(n).Density = TextBoxDensity.text

 planets(n).Colour = ComboBoxColour.text

 planets(n).XPosistion = ClickPosistion.X

 planets(n).YPosistion = ClickPosistion.Y

 planets(n).InUse = TRUE

 planets(n).InitialVelocity = TextBoxVelocity

 planets(n).OriginalX = ClickPosistion.X

 planets(n).OriginalY = ClickPosistion.Y

 EXIT FOR

 END FOR

 END FOR

ELSEIF deletecursor = TRUE THEN

 Y = ClickPosistion.Y

 X = ClickPosistion.X

 FOR n = 0 TO 200

 l = SQRT((2* (planets(n).radius)^2))

 d = SQRT(planets(n).radius – (0.5*l^2))

 IF (planets(n).X + d < X) AND (planets(n).X – d > X) AND (planets(n).Y + d < Y) AND

Matthew Micklewright

pg. 33

(planets(n).Y – d > Y) THEN

 planets(n).InUse = FALSE

 END IF

 END FOR

ELSEIF InfoCursor = TRUE THEN

 Y = ClickPosistion.Y

 X = ClickPosistion.X

 FOR n = 0 TO 200

 l = SQRT((2* (planets(n).radius)^2))

 d = SQRT(planets(n).radius – (0.5*l^2))

 IF (planets(n).X + d < X) AND (planets(n).X – d > X) AND (planets(n).Y + d < Y) AND

(planets(n).Y – d > Y) THEN

 DRAW ELIPSE ON CANVAS(CENTRE = (planets(n).X, planets(n).Y), RADIUS =

planets(n).radius + 5, FILLCOLOUR = White)

 DRAW ELIPSE ON CANVAS(CENTRE = (planets(n).X, planets(n).Y), RADIUS =

planets(n).radius, FILLCOLOUR = planets(n).colour)

 AdvancedTextBoxRad = planet(n).Radius

 AdvancedTextBoxDen = planet(n).Density

 AdvancedTextBoxIntialX = planet(n).InitialX

 AdvancedTextBoxInitialY = planet(n).intialY

 AdvancedTextBoxPosX = planet(n).Position

 AdvancedTextBoxPosY = planet(n).Position

 END IF

 END FOR

END IF

Mouse Up
When this event is triggered, it will create a planet with the velocity created from the length and

direction of the line drawn in the mouse move event. However a planet is only created if the add

planet tool is selected.

Mouse Move
If the mouse is being held down and the add planet tool is in use then graphically draw a line

between original click and current mouse position as well as measuring and storing the length and

direction of this line ready for the mouse up event.

Matthew Micklewright

pg. 34

Clear all click
ShowDialogue

If dialogue.Answer = Yes

 DeleteAllPlanets()

 DrawGraphics()

End if

Play clicked
IF BtnPlayPause = “Play” then

BtnAdd = disabled

BtnDel = disabled

BtnInfo = disabled

BtnSave = disabled

BtnLoad = disabled

BtnPlayPause = “Paused”

LOOP UNTIL BtnPlayPause PRESSED OR ClearAll PRESSED:

DrawCanvas()

CalcForces()

END LOOP

ELSE

 DrawCanvas()

BtnAdd = enabled

BtnDel = enabled

BtnInfo = enabled

BtnSave = enabled

BtnLoad = enabled

BtnPlayPause = “Play”

End IF

Matthew Micklewright

pg. 35

Add planet clicked
cursorType = cross

addCursor = true

InfoCursor = false

DelCursor = false

BtnAdd = disabled

BtnDel = enabled

BtnInfo = enabled

Delete planet clicked
cursorType = hand

addCursor = false

InfoCursor = false

DelCursor = true

BtnAdd = enabled

BtnDel = disabled

BtnInfo = enabled

Information tool click
cursorType = arrow

addCursor = false

InfoCursor = true

DelCursor = false

BtnAdd = enabled

BtnDel = enabled

BtnInfo = disabled

Save Button click
This will show the user the save dialogue and then will retrieve the path and file name when the user

clicks save. This is then passed to the save code that was shown earlier and the data for the

simulation can be written to the textfile

Load Button click
This will show the user the load file dialogue and will get the path as well as the file name when the

user clicks the load button on the dialogue. The path is then passed to the load subroutine which will

read the data from the textfile at that location.

Matthew Micklewright

pg. 36

Show Advanced checkbox changed
If AdvCheckBox.checked = true

 Then show AdvancedTab

ELSE

 Hide AdvancedTab

Volatile Storage

Class Planet
The class planet will act as a template for all of the celestial objects in a simulation. It will have the

following methods and attributes.

Attributes:

Structure Displacement

 -XComp as decimal

 -YComp as decimal

 -InUse as Boolean

Private:

_radius as decimal

_density as decimal

_colour as string

_xposision as decimal

_yposition as decimal

_inuse as Boolean

Public:

-InitialVelocity as displacement

Methods

Functions:

- Volume()
- Mass()

Properties:

- Radius as decimal
- Density as decimal
- Colour as string
- Xposition as decimal
- Yposition as decimal
- InUse as boolean

So that each object in a simulation is easily identifiable, they will all be stored in an array. This way,

each planet has a unique identifier and an identifying value can be passed to different subroutines

more easily than passing the entire instance of that class.

Unfortunately, that means that the array will be a global set of variables but it is not an easy or

necessary step to pass all of that data around the procedures.

Matthew Micklewright

pg. 37

Global Variables
A large issue in designing this program is the issue of global variables. Because of the fact that the

program is event driven and yet has many complex states means that when an event occurs the

program may need to know what state it is in to know what needs to be done.

For example, when the mouse click on canvas event is triggered the action of the program depends

on which of the three main tools is currently selected. It is not possible to pass a variable from the

button select event to the canvas click event because one does not necessarily follow the other.

One solution could be to have hidden textboxes that store values representing these states,

however, these are not much better than a global variable as they can be incorrectly altered from

anywhere in the program.

Technical Solution
Imports System.Threading
Imports System.IO

Public Class Canvas

 'global variables:
 Dim g As Graphics
 Dim planets(20) As planet ' stores all instances of the class planet
 Dim RunThread As Boolean = False ' represents whether the simulation is running or paused, true = running
 Dim MouseDown As Boolean = False ' used to show in the program if the mouse button is held down or not, True = down
 Dim ClickX As Integer ' used to show the X location of a click
 Dim ClickY As Integer ' used to show the Y location of a click
 Dim WhichCursor As String

 Sub sortByRadius()
 Dim Rad(20) As Integer
 Dim conversion(20) As planet
 For n = 0 To 20
 conversion(n) = New planet
 Next

 For index = 0 To 20
 Rad(index) = planets(index).Radius ' puts the masses into an array
 Next

 MergeSort(Rad) 'sorts the massess of the planets into ascending order

 'now that the radii have been ordered in an array they are matched to their planets again, when a planet is matched it is
moved to a temporary array (conversion)
 'this means that the planets are re-ordered into the conversion array with ascending radii

 Dim index2 As Integer ' this stores the next available slot in the temporary conversion array
 For plnIndex = 0 To 20 ' for every value in the Mass array
 For index = 0 To 20 ' for every planet

Matthew Micklewright

pg. 39

 If Not ((planets(plnIndex).InUse = False) Or (Rad(index) = 0)) Then 'if the planet is in use in the current
simulation
 If Math.Round(planets(plnIndex).Radius) = Rad(index) Then ' if the mass of that planet matches the mass in the
array
 conversion(index2).Radius = planets(plnIndex).Radius ' puts all of the values into the conversion array so
that the main array can be re-ordered
 conversion(index2).Density = planets(plnIndex).Density
 conversion(index2).Colour = planets(plnIndex).Colour
 conversion(index2).Xposition = planets(plnIndex).Xposition
 conversion(index2).Yposition = planets(plnIndex).Yposition
 conversion(index2).InUse = planets(plnIndex).InUse
 conversion(index2).InitialVelocity = planets(plnIndex).InitialVelocity
 planets(plnIndex).InUse = False
 index2 += 1
 End If
 End If

 Next
 Next
 ClearPlanets() ' now delete all of the planets from the planets array as they have been put into the temporary conversion
array

 For index = 0 To 20 ' moves all values from conversion to planets so that it can be used in the rest of the program.
 If conversion(index).InUse = True Then
 planets(index).Radius = conversion(index).Radius
 planets(index).Density = conversion(index).Density
 planets(index).Colour = conversion(index).Colour
 planets(index).Xposition = conversion(index).Xposition
 planets(index).Yposition = conversion(index).Yposition
 planets(index).InUse = conversion(index).InUse
 planets(index).InitialVelocity = conversion(index).InitialVelocity
 End If
 Next
 End Sub ' orders the planets into descending order by radii in the array planets

 Public Sub MergeSort(ByVal ar() As Integer)
 DoMergeSort(ar, 0, ar.Length - 1)
 End Sub ' passes the radii to the merge sorting sub with minimum and maximum values

Matthew Micklewright

pg. 40

 Private Sub DoMergeSort(ByVal array() As Integer, ByVal Min As Integer, ByVal Max As Integer)
 'keeps down the array into halves and then quaters the sub arrays etc. - Divide stage
 ' then recombines the array in descending order - Conquer Stage
 If Min >= Max Then
 Return
 End If
 Dim length As Integer = Max - Min + 1
 Dim middle As Integer = Math.Floor((Min + Max) / 2)
 DoMergeSort(array, Min, middle)
 DoMergeSort(array, middle + 1, Max)
 Dim temp(array.Length - 1) As Integer
 For i As Integer = 0 To length - 1
 temp(i) = array(Min + i)
 Next
 Dim m1 As Integer = 0
 Dim m2 As Integer = middle - Min + 1
 For i As Integer = 0 To length - 1
 If m2 <= Max - Min Then
 If m1 <= middle - Min Then
 If temp(m1) > temp(m2) Then
 array(i + Min) = temp(m2)
 m2 += 1
 Else
 array(i + Min) = temp(m1)
 m1 += 1
 End If
 Else
 array(i + Min) = temp(m2)
 m2 += 1
 End If
 Else
 array(i + Min) = temp(m1)
 m1 += 1
 End If
 Next

 End Sub ' performs the recursive merge sort

 Sub loadSim(ByVal path As String)
 ClearPlanets() ' resets entire array

Matthew Micklewright

pg. 41

 Dim reader As StreamReader = New StreamReader(path) 'opens the text file in the location path
 Dim textLine As String = reader.ReadLine() ' textline stores a line of text read from the file that was opened in the above
line
 Do Until textLine = Nothing ' = keep reading lines until you reach a blank line
 For Each planet In planets ' = go through every instance in the array
 If planet.InUse = False Then ' = if the inuse marker is false then the array location is empty so new data can be
stored in it
 'store the various details about the planet in the memory locations:
 planet.Radius = textLine
 planet.Density = reader.ReadLine()
 planet.Colour = reader.ReadLine()
 planet.Xposition = reader.ReadLine()
 planet.Yposition = reader.ReadLine()
 planet.InitialVelocity.Xcomp = reader.ReadLine()
 planet.InitialVelocity.Ycomp = reader.ReadLine()

 planet.InUse = True ' shows that this position in the array is now in use
 Exit For ' can now leave for as a position has beeen found
 End If
 Next
 textLine = reader.ReadLine()
 Loop
 g.Clear(Color.Black)
 DrawGraphics() ' refresh graphics on screen to show the new simulation that has been loaded above
 reader.Close() ' close the text document
 End Sub ' loads simulations

 Sub SaveSim(ByVal Path As String)
 Dim writer As IO.StreamWriter = New IO.StreamWriter(Path) ' open file in specified location
 For Each planet In planets ' = go through every instance in the array
 If planet.InUse = True Then ' = if the inuse marker is true then there is a planet whos data has to be saved
 'output to the textfile all nessecary data on the planet:
 writer.WriteLine(planet.Radius)
 writer.WriteLine(planet.Density)
 writer.WriteLine(planet.Colour)
 writer.WriteLine(planet.Xposition)
 writer.WriteLine(planet.Yposition)
 writer.WriteLine(planet.InitialVelocity.Xcomp)
 writer.WriteLine(planet.InitialVelocity.Ycomp)

Matthew Micklewright

pg. 42

 End If
 Next
 writer.Close() ' close the text file

 End Sub ' saves simulations

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Me.KeyPreview = True ' needed for keyboard shortcuts

 NumericUpDownSpeed.Text = 5

 Me.DoubleBuffered = True ' supposed to help with flickering graphics - I am still unsure whether it does or not
 SetStyle(ControlStyles.OptimizedDoubleBuffer, True)
 Me.SetStyle(ControlStyles.UserPaint, True)
 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

 ' hides textboxes that stores initial velocity - this is a feature that was going to be visible to users but it made more
sense from a design point of view to take it away, however it's nessecary to the code.
 TextBoxInitialVelXComp.Hide()
 TextBoxInitialVelYComp.Hide()
 ' hides textboxes that stores X and Y locations in graphics - this is a feature that was going to be visible to users but it
made more sense from a design point of view to take it away, however it's nessecary to the code.
 TextBoxXcor.Hide()
 TextBoxYcor.Hide()

 ButtonInfoTool.Enabled = False
 'starting data for the 3 textboxes - this gives user an idea of what sort of val they need to enter without having to look at
tool tip
 TextBoxDensity.Text = 5
 TextBoxRadius.Text = 20
 ComboBoxColour.Text = "Grey"

 'window formating etc. :
 Panel1.Hide() ' hidden so that it can be shown again - this refreshes the panel so that it apears properly
 Me.WindowState = FormWindowState.Maximized ' maximises window
 Panel2.Dock = DockStyle.Right 'docks controls to right hand side of screen
 ' makes canvas the same size as screen

Matthew Micklewright

pg. 43

 PictureBoxCanvas.Width = (Me.Width)
 PictureBoxCanvas.Height = (Me.Height)

 g = Me.PictureBoxCanvas.CreateGraphics 'enables graphics on the canvas

 ClearPlanets() 'sets up the array of planets
 DrawGraphics()
 'makes sure there is a location for the program to open when the load or save buttons are pressed
 If (Not System.IO.Directory.Exists("C:\Gravitas")) Then
 System.IO.Directory.CreateDirectory("C:\Gravitas")
 End If

 TextBoxAdvRad.Enabled = False
 TextBoxAdvDen.Enabled = False
 TextBoxAdvInitialX.Enabled = False
 TextBoxAdvInitialY.Enabled = False
 TextBoxAdvMass.Enabled = False
 TextBoxAdvXpos.Enabled = False
 TextBoxAdvYpos.Enabled = False
 End Sub ' intial formating for the form and setting up graphics etc.

 Private Sub Form1_KeyDown(ByVal sender As Object, ByVal e As System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyDown
 If e.Shift And e.KeyCode.ToString = "A" Then ' shift-A = add planet tool
 ButtonAddPlanet.PerformClick()
 End If

 If e.Shift And e.KeyCode.ToString = "D" Then ' shift-D = delete planet tool
 ButtonDeletePlanet.PerformClick()
 End If

 If e.Shift And e.KeyCode.ToString = "R" Then ' shift-R = Run simultion
 ButtonPlay.PerformClick()
 End If

 If e.Control And e.KeyCode.ToString = "S" Then ' ctrl-S = save simulation
 ButtonSave.PerformClick()
 End If

 If e.Control And e.KeyCode.ToString = "L" Then ' ctrl-L = load simulation
 ButtonSave.PerformClick()

Matthew Micklewright

pg. 44

 End If
 End Sub 'handles keyboard Shortcuts

 Sub CreatePlanet()
 Dim strVel As String ' temporary storage for the output of the initial velocity textboxes, this is so that validation can
take place

 For Each planet In planets ' = go through array
 If planet.InUse = False Then ' = until you find a position that is not currently in use

 'establishes values for radius etc. from textboxes
 planet.Radius = TextBoxRadius.Text
 planet.Density = TextBoxDensity.Text
 planet.Colour = ComboBoxColour.Text
 planet.Xposition = TextBoxXcor.Text
 planet.Yposition = TextBoxYcor.Text
 planet.InUse = True 'marks that planet as in use, therefore it won't be written over

 strVel = TextBoxInitialVelYComp.Text
 If TextBoxInitialVelYComp.Text = Nothing Then 'if the textbox is blank then taking it and directly putting it into an
integer would cause it to crash
 planet.InitialVelocity.Ycomp = 0
 Else
 planet.InitialVelocity.Ycomp = TextBoxInitialVelYComp.Text
 End If

 strVel = TextBoxInitialVelXComp.Text
 If TextBoxInitialVelXComp.Text = Nothing Then 'if the textbox is blank then taking it and directly putting it into an
integer would cause it to crash
 planet.InitialVelocity.Xcomp = 0
 Else
 planet.InitialVelocity.Xcomp = TextBoxInitialVelXComp.Text
 End If

 Exit For
 End If
 Next
 End Sub ' Gathers data for new entry into the planet array

 Sub DrawGraphics()

Matthew Micklewright

pg. 45

 If Not CheckBoxTrace.Checked Then
 g.Clear(Color.Black)
 End If
 For Each planet In planets ' = every instance of planet in the array
 If planet.InUse = True Then 'if its in use flag is true then it needs to be drawn
 Dim x As Decimal = (planet.Xposition - 0.5 * (planet.Radius * 2))
 Dim y As Decimal = (planet.Yposition - 0.5 * (planet.Radius * 2))

 'there isn't a way to have one fill statement so this select case draws the planet with the appropriate colour
 Select Case planet.Colour
 Case "Grey"
 g.FillEllipse(Brushes.Gray, x, y, (planet.Radius * 2), (planet.Radius * 2))
 Case "Blue"
 g.FillEllipse(Brushes.Blue, x, y, (planet.Radius * 2), (planet.Radius * 2))
 Case "Yellow"
 g.FillEllipse(Brushes.Yellow, x, y, (planet.Radius * 2), (planet.Radius * 2))
 Case "Red"
 g.FillEllipse(Brushes.Red, x, y, (planet.Radius * 2), (planet.Radius * 2))
 Case "Green"
 g.FillEllipse(Brushes.Green, x, y, (planet.Radius * 2), ((planet.Radius * 2)))
 End Select

 End If
 Next

 End Sub 'updates the graphic output

 Private Sub DoWork()
 sortByRadius()
 While RunThread = True ' until the pause button is pressed runThread will be true, therefore this will keep looping until
pause is pressed.
 DrawGraphics() ' update grapics
 'if the merge on collision checkbox is ticked then this boolean will be true and so the program will check to see whether
any planets need to merge and merge them if they do
 If CheckBoxCollision.Checked = True Then
 checkMerge()
 End If

Matthew Micklewright

pg. 46

 calcForces() ' find new planet positions
 End While
 End Sub ' checks pause button has not been pressed

 Sub checkMerge()
 Dim merge As Boolean = False ' will be true when two planets should merge
 For Each planet In planets ' = for every instance of planet in the array
 If planet.InUse <> False Then ' only checks the planets that are currently in use in the simulation
 ' will go through every planet in the array that is in use, OTHER than the current planet. This means that each
planet gets compared to every other planet
 For Each pln In planets
 If pln.InUse <> False And Not ((planet.Xposition = pln.Xposition) And (planet.Yposition = pln.Yposition) And
(planet.Radius = pln.Radius)) Then

 'if the planet is within the other planet in both the x and the y then merge will become true to show that
they should merge together
 If pln.Xposition > (planet.Xposition - planet.Radius) And pln.Xposition < (planet.Xposition + planet.Radius)
And pln.Yposition > (planet.Yposition - planet.Radius) And pln.Yposition < (planet.Yposition + planet.Radius) Then
 merge = True
 End If

 'merges the planets together if they should be
 If merge = True Then
 Dim M As Decimal
 If planet.mass >= pln.mass Then ' makes sure that the smaller planet is added to the larger
 planet.InitialVelocity.Xcomp = ((planet.InitialVelocity.Xcomp * planet.mass) +
(pln.InitialVelocity.Xcomp * pln.mass)) / (planet.mass + pln.mass)
 planet.InitialVelocity.Ycomp = ((planet.InitialVelocity.Ycomp * planet.mass) +
(pln.InitialVelocity.Ycomp * pln.mass)) / (planet.mass + pln.mass)
 planet.Radius += pln.Radius 'adds the radii together
 M = (planet.mass + pln.mass)
 planet.Density = M / ((4 / 3) * Math.PI * Math.Pow(planet.Radius, 3))

 'planet.Density = (planet.mass + pln.mass) / ((4 / 3) * Math.PI * (Math.Pow((planet.Radius +
pln.Radius), 3))) ' finds density by mass / volume
 ' finds intial velocity by finding the momentum's and adding them

Matthew Micklewright

pg. 47

 'removes other planet from simulation
 pln.InUse = False
 pln.Radius = Nothing
 pln.Density = Nothing
 pln.Xposition = Nothing
 pln.Yposition = Nothing

 ElseIf planet.mass < pln.mass Then ' makes sure that the smaller planet is added to the larger
 pln.InitialVelocity.Xcomp = ((planet.InitialVelocity.Xcomp * planet.mass) +
(pln.InitialVelocity.Xcomp * pln.mass)) / (planet.mass + pln.mass)
 pln.InitialVelocity.Ycomp = ((planet.InitialVelocity.Ycomp * planet.mass) +
(pln.InitialVelocity.Ycomp * pln.mass)) / (planet.mass + pln.mass)
 pln.Radius += planet.Radius 'adds the radii together
 M = (planet.mass + pln.mass)
 pln.Density = M / ((4 / 3) * Math.PI * Math.Pow(pln.Radius, 3))

 'removes other planet from simulation
 planet.InUse = False
 planet.Radius = Nothing
 planet.Density = Nothing
 planet.Yposition = Nothing
 planet.Yposition = Nothing

 End If
 merge = False ' resets merge for later checks
 End If
 End If
 Next
 End If
 Next
 End Sub ' checks to see whether there are any planets that need to be merged into one and if so it does this

 Sub calcForces()

 Dim distance As Decimal ' stores a distance between two planets
 Dim force As Decimal ' stores the force between two planets
 Dim ForceHor As Decimal ' stores the horizontal component of the force between two planets
 Dim ForceVer As Decimal ' stores the vertical component of the force between two planets

Matthew Micklewright

pg. 48

 Dim GravConst As Decimal = 0.00667 ' gravitational constant - changed for my model so that it works in an interesting way in
the scale that I have

 Dim index1 As Integer
 Dim index2 As Integer

 For index1 = 0 To 20

 For index2 = 0 To 20
 If (planets(index1).InUse = True) And (planets(index2).InUse = True) And index1 < index2 Then

 distance = Math.Sqrt(Math.Pow((planets(index1).Xposition - planets(index2).Xposition), 2) +
Math.Pow((planets(index1).Yposition - planets(index2).Yposition), 2))
 force = planets(index1).mass * planets(index2).mass
 force = force * GravConst
 force = force / Math.Pow(distance, 2)
 ForceHor = force * ((planets(index1).Xposition - planets(index2).Xposition) / distance)
 ForceVer = Math.Sqrt(Math.Abs(Math.Pow(force, 2) - Math.Pow(ForceHor, 2)))

 'for planets(index1)
 Dim tempXval As Decimal = ForceHor / (2 * planets(index1).mass)
 Dim tempYval As Decimal = ForceVer / (2 * planets(index1).mass)

 If planets(index1).Xposition > planets(index2).Xposition Then
 tempXval = Math.Abs(tempXval) * -1
 Else
 tempXval = Math.Abs(tempXval)
 End If
 If planets(index1).Yposition > planets(index2).Yposition Then
 tempYval = Math.Abs(tempYval) * -1
 Else
 tempYval = Math.Abs(tempYval)
 End If

 planets(index1).InitialVelocity.Xcomp += tempXval
 planets(index1).InitialVelocity.Ycomp += tempYval

Matthew Micklewright

pg. 49

 'for planets(index2)
 tempXval = ForceHor / (2 * planets(index2).mass)
 tempYval = ForceVer / (2 * planets(index2).mass)

 If planets(index2).Xposition > planets(index1).Xposition Then
 tempXval = Math.Abs(tempXval) * -1
 Else
 tempXval = Math.Abs(tempXval)
 End If
 If planets(index2).Yposition > planets(index1).Yposition Then
 tempYval = Math.Abs(tempYval) * -1
 Else
 tempYval = Math.Abs(tempYval)
 End If

 planets(index2).InitialVelocity.Xcomp += tempXval
 planets(index2).InitialVelocity.Ycomp += tempYval

 End If
 Next

 planets(index1).Xposition += (planets(index1).InitialVelocity.Xcomp / 50)
 planets(index1).Yposition += (planets(index1).InitialVelocity.Ycomp / 50)
 Next

 CalcSimSpeed() ' goes to sub to calculate the waiting period between calculations and therefore the frame rate/ speed of
simulation

 End Sub ' calculates the movement of all of the planets and updates the positions of the planets accordingly

 Sub CalcSimSpeed()

 Dim speed As String = NumericUpDownSpeed.Text ' gets speed value from the nummeric up down which has a range 0 to 10

 'the variable speed represents the number of milliseconds that the program will wait before calculating the next frame of the
animation

 If Empty(speed) = True Then ' checks to see that the speed is not nothing

Matthew Micklewright

pg. 50

 speed = 50 ' if so the speed is set to 50
 Else
 If IsInt(speed) = True Then ' makes sure the speed is castable as an integer
 speed = CInt(speed)
 If speed = 0 Then ' is the speed is 0 then the program cannot wait 0 milliseconds because the flicker would be so bad
that the program would be unusable
 speed = 1 ' instead the wait time is set to 1 millisecond which is still bad but managable
 Else
 speed = speed * 10 ' if the speed is not 0 then it is multiplied by ten as there is no noticable difference
between 1,2,3 etc. but there is between 20, 30, 50 etc.
 End If
 Else ' if it is not it may be a negative number etc.
 speed = 50 ' sets speed to 50
 speed = CInt(speed) ' casts speed to an integer
 End If

 End If

 Threading.Thread.Sleep(speed) ' waits the amount of time calculated above.
 End Sub ' used to workout the appropriate speed for the model to run at based on input from numericUpDownSpeed. Also has
validation for this input

 Function Empty(ByVal Value As String)
 If Value = Nothing Then
 Return True
 Else
 Return False
 End If
 End Function 'function used to determine whether the given string is null or has a value, True if Null, False if Not Null.

 Function IsInt(ByVal val As String)
 Dim val1 As Integer
 Dim length As Integer = val.Length
 Dim Invalid As Boolean = False

 For n = 0 To (length - 1) ' for every character in the string
 val1 = Asc(val(n)) ' get the ascii value of the character
 If Not (val1 >= 48 And val1 <= 57) Then ' if the ascii value is between 48 and 57 then the character is a number

Matthew Micklewright

pg. 51

 Return False 'if not then the whole value is not a number and will cause an error when it is cast as an integer so
false is returned
 MsgBox("False")
 End If
 Next

 If val = Nothing Then ' incase the value is nothing and length = 0
 Return True ' the integer value will end up being 0
 End If

 Return True ' if it reaches this stage and it has not returned false then it must be a number so true is returned

 End Function 'checks to see if the givin value is an integer - used for validation

 Sub ClearPlanets()
 Dim index As Integer
 ' goes through positions 0 to 20 and puts in a new instance of planet
 For index = 0 To 20
 planets(index) = New planet '
 Next
 End Sub ' sets up the planet array as a series of 20 instances of planet all without any values, this is used both at the start
of the program to create the array and at any point that all planets must be deleted

 Sub PutInAdv(ByVal position As Integer)
 'Puts in :

 TextBoxAdvRad.Text = planets(position).Radius ' Radius
 TextBoxAdvDen.Text = planets(position).Density 'Density
 TextBoxAdvInitialX.Text = planets(position).InitialVelocity.Xcomp ' Initial Velocity X component
 TextBoxAdvInitialY.Text = planets(position).InitialVelocity.Ycomp ' Initial Velocity Y component
 TextBoxAdvXpos.Text = planets(position).Xposition ' Planet Y position
 TextBoxAdvYpos.Text = planets(position).Yposition ' Planet X position
 TextBoxAdvMass.Text = planets(position).mass 'Planet Mass

 End Sub ' puts the appropriate values into the advanced tab for the required planet

 Sub DrawOneObj(ByVal col As String, ByVal diameter As Integer, ByVal x As Integer, ByVal y As Integer)
 x -= 0.5 * diameter ' re-adjusts the X and Y locations as the regular draw ellipse will not put the centre right on the click
location
 y -= 0.5 * diameter

Matthew Micklewright

pg. 52

 Select Case col ' draws the circle of the chosen colour and size in the click location
 Case "Grey"
 g.FillEllipse(Brushes.Gray, x, y, diameter, diameter)
 Case "Blue"
 g.FillEllipse(Brushes.Blue, x, y, diameter, diameter)
 Case "Yellow"
 g.FillEllipse(Brushes.Yellow, x, y, diameter, diameter)
 Case "Red"
 g.FillEllipse(Brushes.Red, x, y, diameter, diameter)
 Case "Green"
 g.FillEllipse(Brushes.Green, x, y, diameter, diameter)
 End Select
 End Sub ' draws just one planet when given: location (x,y) diameter and colour

 Function ValidateInput(ByVal Str As String, ByVal field As String, ByVal min As Integer, ByVal max As Integer) ' min and max are
the upper and lower bounds of excepted values, field is the name of the input (e.g. Radius), Str is the input
 If Str = Nothing Then ' checks that it is not null
 MsgBox("You Must Enter A {0} Before You Create A Planet!", field)
 Else
 If IsInt(Str) = True Then ' goes to function that ensures it is an integer
 If CInt(Str) < min Or CInt(Str) > max Then ' checks range
 MsgBox(field & " must be integer between " & min & " and " & max)
 Else
 Return True ' if it meets all requirements then it can return true
 End If
 Else
 MsgBox(field & " must be integer between " & min & " and " & max)
 End If
 End If
 End Function ' makes sure that a input is a valid integer - true if valid, false if invalid

 Private Sub PictureBoxCanvas_mousedown(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles
PictureBoxCanvas.MouseDown
 TextBoxXcor.Text = e.X ' gets the X and Y location of the click and stores it in the textboxes so the user can see it
numericaly
 TextBoxYcor.Text = e.Y
 ' A big list of nested ifs that decide what needs to happen when the user clicks down on the canvas:

 If RunThread = False Then ' if the simulation is NOT running then

Matthew Micklewright

pg. 53

 TextBoxAdvRad.Text = "" ' clear all textboxes
 TextBoxAdvDen.Text = ""
 TextBoxAdvInitialX.Text = ""
 TextBoxAdvInitialY.Text = ""
 TextBoxAdvXpos.Text = ""
 TextBoxAdvYpos.Text = ""
 TextBoxAdvMass.Text = ""
 If CheckBoxTrace.Checked Then ' clear the canvas if the trace planets tool is on
 g.Clear(Color.Black)
 End If
 DrawGraphics()
 If (WhichCursor = "A") Then ' If the user wants to create a planet
 Dim inputStr As String
 Dim field As String
 Dim rangeMin As String
 Dim rangeMax As String
 inputStr = TextBoxRadius.Text
 field = "Radius"
 rangeMin = 1
 rangeMax = 120
 If ValidateInput(inputStr, field, rangeMin, rangeMax) Then ' validates Radius
 inputStr = TextBoxDensity.Text
 field = "Density"
 rangeMin = 1
 rangeMax = 1000
 If ValidateInput(inputStr, field, rangeMin, rangeMax) Then ' validates Density
 MouseDown = True ' sets this variable to true so that the program knows the mouse button is currently being
held down
 ClickX = e.X ' gets the X and Y location of the click
 ClickY = e.Y
 'works out details for the advanced tab and puts them in for the user to see
 TextBoxAdvDen.Text = TextBoxDensity.Text ' outputs the new planets density
 TextBoxAdvRad.Text = TextBoxRadius.Text ' outputs the new planets radius
 TextBoxAdvMass.Text = ((4 / 3) * (Math.PI) * Math.Pow((TextBoxRadius.Text), 3)) * (TextBoxDensity.Text) '
outputs the new planets mass
 TextBoxAdvXpos.Text = e.X ' outputs the new planets X and Y position
 TextBoxAdvYpos.Text = e.Y
 Dim col As String = ComboBoxColour.Text ' gets colour from combo box
 Dim diameter As Integer = (TextBoxRadius.Text * 2) ' finds the diameter as double the radius
 Dim x As Integer = TextBoxXcor.Text ' gets the X and Y location of the click

Matthew Micklewright

pg. 54

 Dim y As Integer = TextBoxYcor.Text
 DrawOneObj(col, diameter, x, y)
 End If
 End If
 ElseIf WhichCursor = "D" Then 'If user is trying to delete a planet
 Dim index As Integer = CheckClick(e.X, e.Y) ' function that checks to see if a click is within a planet - returns
that planets number OR 23 if no planet is selected
 If index <> 23 Then
 planets(index).InUse = False
 planets(index).Radius = Nothing
 planets(index).Density = Nothing
 planets(index).Colour = Nothing
 planets(index).InitialVelocity.Xcomp = Nothing
 planets(index).InitialVelocity.Ycomp = Nothing
 planets(index).TotalVelocity.Xcomp = Nothing
 planets(index).TotalVelocity.Ycomp = Nothing
 g.Clear(Color.Black)
 DrawGraphics() ' update graphics so that user no longer sees the deleted planet on screen
 MouseDown = False ' mousedown is now false
 End If
 ElseIf WhichCursor = "I" And (CheckBoxToggleAdvanced.Checked = True) Then 'if neither tool is in use then it selects the
planet and displays its data in the advanced tab as the information tool must be in use
 Dim index As Integer = CheckClick(e.X, e.Y) ' function that checks to see if click is within a planet - returns that
planets number OR 23 if no planet is selected
 If index = 23 Then
 DrawGraphics()
 TextBoxAdvRad.Text = ""
 TextBoxAdvDen.Text = ""
 TextBoxAdvInitialX.Text = ""
 TextBoxAdvInitialY.Text = ""
 TextBoxAdvXpos.Text = ""
 TextBoxAdvYpos.Text = ""
 TextBoxAdvMass.Text = ""
 Else
 planets(index).SelectForAdvanced = True
 PutInAdv(index)
 g.Clear(Color.Black)
 DrawGraphics()
 'draws a white circle larger than the planet then redraws the planet on top
 'this gives the impression that there is a white circle around the planet showing it as selected

Matthew Micklewright

pg. 55

 Dim d As Integer = planets(index).Radius * 2 ' finds diameter
 g.FillEllipse(Brushes.White, (planets(index).Xposition - planets(index).Radius - 5), (planets(index).Yposition -
planets(index).Radius - 5), (d + 10), (d + 10)) ' draws the white circle - canvas does not have to be cleared because the only
changes made are hidden by this larger white circle
 ' then draws the regular planet on top
 DrawOneObj(planets(index).Colour, (planets(index).Radius * 2), planets(index).Xposition,
planets(index).Yposition)
 End If
 End If
 End If

 End Sub ' essentialy a big list of nested ifs that decide what needs to happen when the user clicks down on the canvas

 Function CheckClick(ByVal x As Integer, ByVal y As Integer)
 Dim index As Integer = 0
 For index = 0 To 20 ' for every planet in array
 If planets(index).InUse = True Then ' where it is currently being used in the model
 If (x > (planets(index).Xposition - planets(index).Radius)) And (x < (planets(index).Xposition +
planets(index).Radius)) Then ' if the x coordinate is between the planets upper and lower radius bound
 If (y > (planets(index).Yposition - planets(index).Radius)) And (y < (planets(index).Yposition +
planets(index).Radius)) Then ' and if the y is between the upper and lower bound for that planet
 Return index ' return the number planet in the array
 End If
 End If
 End If
 Next
 Return 23 ' if not any of the planets in the array it returns a value greater than 20 to show that it could not be found
 End Function ' looks through every planet trying to find a planet that contains the passed coordinates

 Private Sub PictureBoxCanvas_mousemove(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles
PictureBoxCanvas.MouseMove
 TextBoxMouseXcor.Text = e.X ' updates mouse location
 TextBoxMouseYcor.Text = e.Y
 If WhichCursor = "A" And (MouseDown = True) Then ' if the user just created a planet and is still holding the mouse down this
means they are drawing a line to give it an intial velocity
 ' DrawGraphics() ' updates graphics
 Dim yCord, xCord As String ' gets the X and Y location for centre of planet
 xCord = TextBoxXcor.Text
 yCord = TextBoxYcor.Text
 g.Clear(Color.Black)

Matthew Micklewright

pg. 56

 DrawGraphics()
 g.DrawLine(Pens.Green, CInt(xCord), CInt(yCord), CInt(e.X), CInt(e.Y)) 'draws green line from centre of planet to cursor
location
 ' draws the main planet again
 Dim col As String = ComboBoxColour.Text ' gets colour
 Dim diameter As Integer = (TextBoxRadius.Text * 2) ' gets diameter
 Dim x As Integer = TextBoxXcor.Text ' gets centre
 Dim y As Integer = TextBoxYcor.Text
 DrawOneObj(col, diameter, x, y)
 Me.TextBoxInitialVelXComp.Text = (ClickX - e.X) ' stores the intial velocity in the textbox based on the length and
direction of the line that has been drawn
 Me.TextBoxInitialVelYComp.Text = (ClickY - e.Y)
 Me.TextBoxAdvInitialX.Text = (ClickX - e.X)
 Me.TextBoxAdvInitialY.Text = (ClickY - e.Y)
 End If
 End Sub ' sorts out what to do when the mouse is move on the canvas

 Private Sub PictureBoxCanvas_mouseUp(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles
PictureBoxCanvas.MouseUp

 If WhichCursor = "A" And (MouseDown = True) Then ' if the user has created a planet and is now releasing there mouse click
 MouseDown = False 'shows that the mouse click is now over

 CreatePlanet() ' creates a planet where the user clicked
 If CheckBoxTrace.Checked Then
 g.Clear(Color.Black)
 End If
 DrawGraphics() ' updates graphics which will now include the new planet

 TextBoxInitialVelXComp.Clear() ' clears out all of the textboxes so that the next planet's data is not corrupted by
leftover data from this planet
 TextBoxInitialVelYComp.Clear()
 TextBoxXcor.Clear()
 TextBoxYcor.Clear()
 TextBoxAdvDen.Clear()
 TextBoxAdvRad.Clear()
 TextBoxAdvXpos.Clear()
 TextBoxAdvYpos.Clear()
 TextBoxAdvInitialX.Clear()
 TextBoxAdvInitialY.Clear()

Matthew Micklewright

pg. 57

 TextBoxAdvMass.Clear()

 End If

 End Sub ' sorts out what happens when the user releases the click on the canvas

 Private Sub ButtonClearAll_Click(sender As Object, e As EventArgs) Handles ButtonClearAll.Click
 If RunThread = True Then
 RunThread = False ' stops the model while the user reads the dialog below
 Dim result As Integer = MessageBox.Show("Do you want to delete your entire model? Any unsaved changes will be lost", "Are
you sure?", MessageBoxButtons.YesNo) ' brings up an 'are you sure' box

 If Not result = DialogResult.No Then ' if the user clicks continue

 ButtonAddPlanet.Enabled = True ' enables all of the buttons that were disabled whilst the simulation was running
 ButtonLoad.Enabled = True
 ButtonSave.Enabled = True
 ButtonPlay.Text = "Play" ' and resets the pause button to a play button as the simulation has now ended
 ButtonDeletePlanet.Enabled = True

 ClearPlanets() ' deletes every planet in the array
 g.Clear(Color.Black)
 ButtonInfoTool.PerformClick()
 Else
 RunThread = True ' restarts the model if the user does selects no on the message box
 Dim MainThread As Thread = New Thread(AddressOf DoWork) ' puts the work of running the simulation in a new parralel
thread as the program needs to be animating the screen as well as waiting for the pause button click event at the same time - this
requires two parralel processing threads
 MainThread.IsBackground = True
 MainThread.Start()
 End If
 Else
 Dim result As Integer = MessageBox.Show("Do you want to delete your entire model? Any unsaved changes will be lost", "Are
you sure?", MessageBoxButtons.YesNo) ' brings up an 'are you sure' box
 If Not result = DialogResult.No Then ' if the user clicks continue

 ClearPlanets() ' deletes every planet in the array
 g.Clear(Color.Black)
 ButtonInfoTool.PerformClick()

Matthew Micklewright

pg. 58

 End If
 End If

 End Sub ' stops the array and deletes all of the planets that were in it

 Private Sub ButtonPlay_Click(sender As Object, e As EventArgs) Handles ButtonPlay.Click

 If ButtonPlay.Text = "Play" Then ' if the simulation was previously paused and the user now wants it to run:

 ButtonPlay.Text = "Pause" ' changes the interface to make more sense for a running simulation by disabling certain
buttons and therefore tools
 ButtonAddPlanet.Enabled = False
 ButtonDeletePlanet.Enabled = False
 ButtonInfoTool.Enabled = False
 ButtonSave.Enabled = False
 ButtonLoad.Enabled = False

 TextBoxAdvDen.Clear() ' clears out all of the textboxes in the advanced tab
 TextBoxAdvInitialX.Clear()
 TextBoxAdvInitialY.Clear()
 TextBoxAdvRad.Clear()
 TextBoxAdvXpos.Clear()
 TextBoxAdvYpos.Clear()
 TextBoxAdvMass.Clear()

 g.Clear(Color.Black)

 RunThread = True ' sets the boolean that represents if the simulation is running to true
 WhichCursor = "NONE" ' disables the tools that effect clicking on the canvas

 Cursor = Cursors.Arrow ' resets cursor to and arrow to demonstrate to the user that they no longer are using the tool
that they had previously selected

 Dim MainThread As Thread = New Thread(AddressOf DoWork) ' puts the work of running the simulation in a new parralel
thread as the program needs to be animating the screen as well as waiting for the pause button click event at the same time - this
requires two parralel processing threads
 MainThread.IsBackground = True
 MainThread.Start()

 Else ' pauses the simulation

Matthew Micklewright

pg. 59

 'resets UI to paused mode by re-enabling tools etc. :
 ButtonPlay.Text = "Play"
 ButtonAddPlanet.Enabled = True
 ButtonDeletePlanet.Enabled = True
 ButtonLoad.Enabled = True
 ButtonSave.Enabled = True
 ButtonInfoTool.Enabled = True

 RunThread = False ' marks the simulation as paused
 DrawGraphics() ' updates the graphics
 ButtonInfoTool.PerformClick()
 End If

 End Sub ' sorts out what to do when the play/pause button is pressed

 Private Sub ButtonAddPlanet_Click(sender As Object, e As EventArgs) Handles ButtonAddPlanet.Click
 Cursor = Cursors.Cross ' changes the cursor type to a cross so that the user can visualy see what tool they have selected
 WhichCursor = "A" ' sets the delete tool and info tool booleans to false as they are not in use and the add tool to true as
this is in use

 ButtonDeletePlanet.Enabled = True ' changes the buttons to disable the tool that is currently selected - this way the user
can easily see which tool they are using and what their other options are
 ButtonAddPlanet.Enabled = False
 ButtonInfoTool.Enabled = True
 End Sub ' sets up the add planet tool

 Private Sub ButtonDeletePlanet_Click(sender As Object, e As EventArgs) Handles ButtonDeletePlanet.Click
 Cursor = Cursors.Hand ' changes the cursor type to a cross so that the user can visualy see what tool they have selected
 WhichCursor = "D" ' sets the add tool and info tool booleans to false as they are not in use and the delete tool to true as
this is in use

 ButtonDeletePlanet.Enabled = False ' changes the buttons to disable the tool that is currently selected - this way the user
can easily see which tool they are using and what their other options are
 ButtonAddPlanet.Enabled = True
 ButtonInfoTool.Enabled = True
 End Sub ' sets up the delete planet tool

 Private Sub ButtonInfoTool_Click(sender As Object, e As EventArgs) Handles ButtonInfoTool.Click

Matthew Micklewright

pg. 60

 Cursor = Cursors.Arrow ' changes the cursor type to a cross so that the user can visualy see what tool they have selected
 WhichCursor = "I" ' sets the add tool and delete tool booleans to false as they are not in use and the info tool to true as
this is in use

 ButtonDeletePlanet.Enabled = True ' changes the buttons to disable the tool that is currently selected - this way the user
can easily see which tool they are using and what their other options are
 ButtonAddPlanet.Enabled = True
 ButtonInfoTool.Enabled = False
 End Sub ' sets up the information tool

 Private Sub ButtonSave_Click(sender As Object, e As EventArgs) Handles ButtonSave.Click
 'sets up the save file dialogue
 With SaveFileDialog1
 .FileName = "" ' file name is inputed by user into dialogue later
 .Title = "Save Simulation" ' title of window
 .InitialDirectory = "C:\Gravitas" ' start location of the file explorer navigation
 .Filter = "Text files|*.txt" ' text files only
 End With
 SaveFileDialog1.ShowDialog() ' shows dialogue
 If SaveFileDialog1.FileName <> "" Then ' makes sure the user puts in a name for the save
 SaveSim(SaveFileDialog1.FileName) ' goes to sub which saves the file
 End If

 End Sub ' sorts out the save file dialogue comming up and what it says to the user

 Private Sub ButtonLoad_Click(sender As Object, e As EventArgs) Handles ButtonLoad.Click
 'sets up the load file dialogue
 With OpenFileDialog1
 .FileName = "" ' file name is inputed by user into dialogue so for now it is blank
 .Title = "Load Simulation" ' title of window
 .InitialDirectory = "C:\Gravitas" ' start location of the file explorer navigation
 .Filter = "Text files|*.txt" ' text files only
 .ShowDialog() ' shows dialogue to user
 End With
 Dim path As String = OpenFileDialog1.FileName ' Gets file name
 If OpenFileDialog1.FileName <> "" Then ' if it's not Null
 loadSim(path) ' it is passed to the load sub which sorts out loading the simulation into the program
 End If
 End Sub ' sorts out the load file dialogue

Matthew Micklewright

pg. 61

 Private Sub CheckBox1_CheckedChanged(sender As Object, e As EventArgs) Handles CheckBoxToggleAdvanced.CheckedChanged
 If Not CheckBoxToggleAdvanced.Checked Then ' user wants to hide AdvTab
 Panel1.Hide() ' hide advanced tab
 If RunThread = False Then
 DrawGraphics()
 End If
 ButtonAddPlanet.PerformClick() ' selects the add planet tool so that the user is not still using the info tool which they
cannot now see
 Else ' user wants advTab to show
 Panel1.Show()
 ButtonInfoTool.PerformClick() ' selects the info tool as this is how the
 End If
 End Sub 'Sorts out whether the advanced tab needs to be showing when the user changes the show advanced checkbox

End Class

Class planet
 Structure displacement
 Public Xcomp As Decimal
 Public Ycomp As Decimal
 Public InUse As Boolean
 End Structure

 Private _radius As Decimal
 Private _density As Decimal
 Private _colour As String
 Private _xposistion As Decimal
 Private _yposistion As Decimal
 Private _inuse As Boolean

 Public SelectForAdvanced As Boolean
 Public InitialVelocity As displacement
 Public TotalVelocity As displacement

 Public Property Radius As Decimal
 Set(value As Decimal)
 _radius = value

Matthew Micklewright

pg. 62

 End Set
 Get
 Return _radius
 End Get
 End Property

 Public Property Density As Decimal
 Set(value As Decimal)
 _density = value
 End Set
 Get
 Return _density
 End Get
 End Property

 Public Property Colour As String
 Set(value As String)
 _colour = value
 End Set
 Get
 Return _colour
 End Get
 End Property

 Public Property Xposition As Decimal
 Set(value As Decimal)
 _xposistion = value
 End Set
 Get
 Return _xposistion
 End Get
 End Property

 Public Property Yposition As Decimal
 Set(value As Decimal)
 _yposistion = value
 End Set
 Get
 Return _yposistion
 End Get

Matthew Micklewright

pg. 63

 End Property

 Public Property InUse As Boolean
 Set(value As Boolean)
 _inuse = value
 End Set
 Get
 Return _inuse
 End Get
 End Property

 Function volume()
 Dim vol As Decimal
 vol = Math.Pow(_radius, 3)
 vol = vol * Math.PI
 vol = vol * (4 / 3)
 Return vol
 End Function

 Function mass()
 Dim mas As Decimal
 mas = volume() * _density
 Return mas
 End Function

End Class

End Class

Testing

Unit Testing
In this section of testing I will be aiming to test the basic functions of the program, that it has

accurate validation and that the buttons perform as expected.

Test Number Test Test
Description

Expected
outcome

Passed/
Failed

Comments

1 Add button
click

Add Button is
clicked

-Disable Add
planet button
-Enable delete
planet button
-Change cursor
to cross

Passed

2 Delete
button
click

Delete planet
button is
clicked

-Disable delete
planet button
-Enable add
planet button
-Change cursor
to hand

Passed

3 Info button
click

Information
button is
clicked

-enables delete
planet button
-enables add
planet button
-Change cursor
to arrow
-disables
information
button

Passed

4 Play
button
click –
playing

Play button
clicked where
the text on the
button says
‘pause’

-stop simulation
-enable delete
planet button
-enable add
planet button
-enable save
simulation
button
-enable load
simulation
button
- select
information tool

Passed

5 Play
button
click -
paused

Play button
clicked where
the text on the
button says
‘play’

- Start
simulation
-Disable delete
planet button
-disable add
planet button

Passed

Matthew Micklewright

pg. 65

-disable load
button
-disable save
button
-disable
information tool

6 Clear all Clear all
clicked

Are You sure
message
appears

Passed

7 Clear all Y Click yes on
clear all ‘are
you sure’
message

-Stop simulation
-delete all
planets
-redraw
graphics
enable delete
planet button
-enable add
planet button
-enable save
simulation
button
-enable load
simulation
button
-disable
information tool

Passed

8 Clear all N Click no on
clear all ‘are
you sure’
message

Continue
running
simulation

Passed

9 Save
opened

Save
simulation
clicked

Show save
simulation
dialogue

Passed

10 Load
opened

Load
simulation
clicked

Show load
simulation
dialogue

Passed

11 Trace
planets
checked

Trace planets
checked whilst
simulation
running

Lines appear
behind moving
objects

Passed

12 Trace
planets
unchecked

Trace planets
unchecked
whilst
simulation
running

Lines behind
moving objects
disappear

Passed

13 Merge
checked

Merge
checked whilst
simulation
running and

Planets merge Passed

Matthew Micklewright

pg. 66

two planets
touching

14 Merge
unchecked

Merge
unchecked
whilst
simulation
running and
two planets
touching

Planets do not
merge

Passed

15 Show
advanced
checked

Show
advanced
checked

Advanced tab
shows

Passed

16 Show
advanced
unchecked

Show
advanced
unchecked

Advanced tab
hidden

Passed

17 Numeric
up down -
down

The down
arrow on the
numeric up
down in the
advanced tab
is clicked

Number
decreases by
one

Passed

18 Numeric
up down -
up

The up arrow
on the
numeric up
down in the
advanced tab
is clicked

Number
increases by one

19 Numeric
up down –
non
integer

The non-
integer value
‘G’ is entered
to the numeric
up down

Number does
not change

20 Numeric
up down –
greater
than limit

A value of 11 is
entered which
is higher than
the maximum
limit for this
input

It should revert
to 10

21 Numeric
up down –
less than
limit

A value of -1 is
entered which
is lower than
the minimum
value for this
input

It should revert
to 0

22 Numeric
up down –
max
acceptable
value

A value of 10 is
entered which
is the highest
value this
input will take

It should be
accepted and
simulation
should run at
speed 10

23 Numeric
up down –

A value of 0 is
entered which

It should be
accepted and

Matthew Micklewright

pg. 67

min
acceptable
value

is the lowest
value this
input will take

simulation
should run at
speed 0

24 Canvas
click –
radius and
density in
range

Click on canvas
with add
planet tool
selected
where radius
and density
are 30 and 400
respectively
(these are
within the
accepted
range 1 to 120
for radius and
1 to 1000 for
density)

Planet will be
drawn on click
location

Passed

25 Validation
on radius
with a non
integer

Enter a value
of 20.7 to
radius

Message box
with “Radius
must be integer
between 1 and
120” should
appear

Passed

26 Validation
on radius-
greater
than range

Enter a value
of 121 to
radius

Message box
with “Radius
must be integer
between 1 and
120” should
appear

Passed

27 Validation
on radius –
less that
range

Enter a value
of 0 to radius

Message box
with “Radius
must be integer
between 1 and
120” should
appear

Passed

28 Validation
on radius
maximum
edge

Enter a value
to the radius
of 120

Planet should
be drawn

Passed

29 Validation
on radius
minimum
edge

Enter a value
to the radius
of 1

Planet should
be drawn

Passed

30 Validation
on radius
against
strings

Enter a value
of ‘string’ to
radius

Message box
with “Radius
must be integer
between 1 and
120” should
appear

Matthew Micklewright

pg. 68

31 Validation
on density
with a non
integer

Enter a value
of 500.6 to the
density

Message box
with “Density
must be integer
between 1 and
1000” should
appear

Passed

32 Validation
on density-
greater
than range

Enter a value
of 1001

Message box
with “Density
must be integer
between 1 and
1000” should
appear

Passed

33 Validation
on density
– less that
range

0 Message box
with “Density
must be integer
between 1 and
1000” should
appear

Passed

34 Validation
on density
maximum
edge

1000 Message box
with “Density
must be integer
between 1 and
1000” should
appear

Passed

35 Validation
on density
minimum
edge

1 Message box
with “Density
must be integer
between 1 and
1000” should
appear

Passed

36 Validation
on density
against
strings

Enter a value
of ‘string’ to
density

Message box
with “Density
must be integer
between 1 and
1000” should
appear

37 Draw
when add
planet
selected

After selecting
add planet I
will click on
the screen to
see if a planet
is drawn.

Planet with
specified radius,
density and
colour is created
on my click
location

38 Planet size I will draw a
three planets,
one with
radius 5, one
with radius 40
and one with
radius 120

The planets with
the larger radii
should appear
proportionally
larger on the
screen

39 Planet
colours

I will draw five
planets all the

The blue planet
should appear

Matthew Micklewright

pg. 69

same apart
from that they
will each have
a different
colour

as such when
draw, as should
the red and the
blue etc.

40 Delete
planet
correct

I will create a
planet and
then click
within its
radius using
the delete tool

It should vanish
as it will have
been deleted

41 Delete
planet
incorrect

I will create a
planet and
click outside of
its radius using
the delete tool

The planet
should remain
unchanged

loading dialogue

Test Number Test Test
Description

Expected
outcome

Passed/
Failed

Comments

42 Load valid
text file

Loading in a
valid text file
that has been
created by the
program using
the save
function

Window closes
and simulation
is loaded

43 Access
non-text
file

Try to view
and load a non
– text file

Cannot view a
non-text file as
text file is the
only file option
viewable

44 Click
cancel

Open the load
dialogue and
click the cancel
button

Window closes

45 Click close
in dialogue
window

Open the load
dialogue and
click the close
window
button in the
top right
corner

Window closes

Saving dialogue

Test Number Test Test
Description

Expected
outcome

Passed/
Failed

Comments

46 Save file I will created a
simulation and
then save it

The window
closes and the

Matthew Micklewright

pg. 70

saved file has
been created

47 Click
cancel

I will open the
save dialogue
and then
attempt to
close it using
the cancel
button next to
the save
button

The window
closes

48 Click close
window

I will open the
save dialogue
and then
attempt to
close it using
the close
window
button in the
top right
corner of the
dialogue

The window
closes

49 Click save
when null

Click the save
button when
the file name
textbox is
empty

Clicking save has
no effect

50 Save over
existing

I will click on
an existing file
instead of
typing a new
name into the
file name
textbox

It should have
an ‘are you sure
message’

Matthew Micklewright

pg. 71

Unit testing screenshots
Test 1: Add button click

Before:

After:

Matthew Micklewright

pg. 72

Test 2: Delete button click

Before:

After:

Matthew Micklewright

pg. 73

Test 3: information button click

Before:

After:

Matthew Micklewright

pg. 74

Test 4: play button click (playing)

Before:

After:

Matthew Micklewright

pg. 75

Test 5: Play button click (paused)

Before:

After:

Matthew Micklewright

pg. 76

Test 6: clear all clicked

Before:

After:

Matthew Micklewright

pg. 77

Test 7: click yes on clear all

Before:

After:

Matthew Micklewright

pg. 78

Test 8: Click no on clear all

Before:

After:

Matthew Micklewright

pg. 79

Test 9: click save

Before:

After:

Matthew Micklewright

pg. 80

Test 10: Click load

Before:

After:

Matthew Micklewright

pg. 81

Test 11: Trace planets checked

Before:

After:

Matthew Micklewright

pg. 82

Test 12: Trace planets unchecked

Before:

After:

Matthew Micklewright

pg. 83

Test 13: merge checked

Before:

After:

Matthew Micklewright

pg. 84

Test 14: merge unchecked

Before:

After:

Matthew Micklewright

pg. 85

Test 15: show advanced checked

Before:

After:

Matthew Micklewright

pg. 86

Test 16: show advanced unchecked

Before:

After:

Matthew Micklewright

pg. 87

Test 17: numeric up down - down

Before:

After:

Matthew Micklewright

pg. 88

Test 18: numeric up down - up

Before:

After:

Matthew Micklewright

pg. 89

Test 19: numeric up down – non-integer

Before:

After:

Matthew Micklewright

pg. 90

Test 20: numeric up down – greater than acceptable range

Before:

After:

Matthew Micklewright

pg. 91

Test 21: numeric up down – less than acceptable range

Before:

After:

Matthew Micklewright

pg. 92

Test 22: numeric up down – max acceptable value

Test 23: numeric up down – min acceptable value

Matthew Micklewright

pg. 93

Test 24: Radius and density – acceptable value

Before:

After:

Matthew Micklewright

pg. 94

Test 25: Radius – less than acceptable range

Before:

After:

Matthew Micklewright

pg. 95

Test 26: Radius – greater than acceptable range

Before:

After:

Matthew Micklewright

pg. 96

Test 27: Radius – non-integer

Before:

After:

Matthew Micklewright

pg. 97

Test 28: Radius – max acceptable value

Before:

After:

Matthew Micklewright

pg. 98

Test 29: Radius – min acceptable value

Before:

After:

Matthew Micklewright

pg. 99

Test 30: Radius – String

Before:

After:

Matthew Micklewright

pg. 100

Test 31: Density – non-integer

Before:

After:

Matthew Micklewright

pg. 101

Test 32: Density – greater than acceptable range

Before:

After:

Matthew Micklewright

pg. 102

Test 33: Density – less than acceptable range

Before:

After:

Matthew Micklewright

pg. 103

Test 34: Density – max acceptable value

Before:

After:

Matthew Micklewright

pg. 104

Test 35: Density – min acceptable value

Before:

After:

Matthew Micklewright

pg. 105

Test 36: Density – String

Before:

After:

Matthew Micklewright

pg. 106

Test 37: Draw planet

Before:

After:

Matthew Micklewright

pg. 107

Test 38: change planet size

Test 39: change planet colour

Matthew Micklewright

pg. 108

Test 40: delete planet (inside radius)

Before:

After:

Matthew Micklewright

pg. 109

Test 41: delete planet (outside radius)

Before:

After:

Matthew Micklewright

pg. 110

Test 42: load valid file

Before:

After:

Matthew Micklewright

pg. 111

Test 43: Access non-text file

Test 44: click cancel (load)

Before:

Matthew Micklewright

pg. 112

After:

Test 45: click close window (load)

Before:

Matthew Micklewright

pg. 113

After:

Test 46: save file

Before:

Matthew Micklewright

pg. 114

After:

Test 47: click cancel (save)

Before:

Matthew Micklewright

pg. 115

After:

Test 48: click close window (save)

Before:

Matthew Micklewright

pg. 116

After:

Test 49: click save where filename is null

Matthew Micklewright

pg. 117

Test 50: save over existing file

Matthew Micklewright

pg. 118

System Testing
In the system testing, I will be identifying whether the simulations work as intended and accurately

demonstrates the movement of celestial bodies.

White Box Testing
Test 1: Initial velocity

Test Description: I will place a planet on the screen with an initial velocity that should send it to the

top right of the screen. To help demonstrate the movement of the planet in a still image I will select

the trace planet option

Expected Outcome: I expect the object to move in the opposite direction as my line

Screenshot Before1:

Screenshot After:

1 For some reason the screenshot failed to pick up the green initial velocity line, in this screen shot there
should be a green line from the centre of the grey planet to the bottom left corner of the screen

Matthew Micklewright

pg. 119

Test 2: Gravitational Attraction

Part a: 2 Planets

Test Description: I will place two objects of high mass but with no initial velocity and see if they are

attracted as they would be in space by gravity. The radius for each will be 30 and the density 500.

Again, I will put trace on to clearly show their movements in a still image

Expected Outcome: The planets should accelerate toward each other

Screenshot Before:

Matthew Micklewright

pg. 120

Screenshot After:

Part b: 3 Planets

Test Description: This will be the same as part a, however I will now use 3 planets instead of 2

Expected Outcome: The planets should accelerate toward each other

Screenshot Before:

Screenshot After:

Matthew Micklewright

pg. 121

Part c: 6 Planets

Test Description: This will also be the same as parts a and b but with 6 planets

Expected Outcome: The planets should accelerate toward each other

Screenshot Before:

Screenshot After:

Matthew Micklewright

pg. 122

Part d: 20 planets

Test Description: This final test will examine the programs ability to take the maximum load of 20

unique planets at a time

Expected Outcome: The planets should accelerate toward each other

Screenshot Before:

Screenshot After:

Matthew Micklewright

pg. 123

Test 3: Gravitational deflection

Test Description: I will place an object of high mass but with no initial velocity on the screen and pass

another object with an initial velocity close by it

Expected Outcome: The moving object should be deflected from its course and pulled around the

back side of the stationary planet

Screenshot Before:

Screenshot After:

Matthew Micklewright

pg. 124

Test 4: Orbit

Part a: 2 Planets

Test Description: I will add a stationary planet in roughly the centre of the screen and then a smaller

planet to its right, this smaller planet will have an initial velocity that will send the planet towards

the top of the screen

Expected Outcome: The resultant force between the smaller planets initial velocity and the pull of

the larger planet should cause it to orbit the planet and return to its starting position.

Screenshot Before:

Matthew Micklewright

pg. 125

Screenshot After:

Part b: 3 Planets

Test Description: This will be the same as part a, however I will now use 3 planets instead of 2

Expected Outcome: The smaller planets should orbit the largest object

Screenshot Before:

Matthew Micklewright

pg. 126

Screenshot After:

Part c: 4 Planets

Test Description: This will also be the same as parts a and b but with 6 planets

Expected Outcome: The smaller planets should orbit the largest object

Screenshot Before:

Matthew Micklewright

pg. 127

Screenshot After:

Test 5: Save and Load

Test Description: To ensure that the save and load functions work correctly I will create a simulation,

save it and then run it. After that, I will clear the canvas and reload the simulation, if it runs the same

as the first time then I can be sure that the program is properly recording all of the data and loading

it in properly. In each case, I have run the simulations for five seconds at speed 0.

Expected Outcome: Unsaved run screenshot should look identical to the saved run screenshot.

Matthew Micklewright

pg. 128

Screenshot of unsaved running:

Screenshot of saved running:

Test 6: Information tool

Test Description: I will create a planet with certain details and then I will click on it again with the

information tool.

Expected Outcome: The planet should be highlighted in white and its details correctly put into the

advanced tab.

Screenshot Before:

Matthew Micklewright

pg. 129

The details of this planet can be seen in the panel on the right

Screenshot After:

Matthew Micklewright

pg. 130

Test 7: Simulation speed

Test Description: To test the simulations speed feature I will run a simulation at speed 10 for 3

seconds and then run the same simulation at speed 0 for 3 seconds

Expected Outcome: The objects in the simulation running at speed 0 should move faster and so

travel further in the same time

Screenshot of speed 0:

Matthew Micklewright

pg. 131

Screenshot of speed 10:

Matthew Micklewright

pg. 132

Black Box Testing
Because this is quite a complex program with many different options to tick or untick etc., it means

that there are many different scenarios to test. Although I have outlined most of the common uses

and functions of the program in the above testing there are other scenarios possible that I have not

considered. I think that the ideal thing to do in this case is black box testing, this will allow me to

have the program tested in ways that I was not expecting it to have to perform and to see if any

bugs arise.

The two testers that I used were a Year 11 physics student and a year 13 physics student. I felt these

were the main target audience for my program and the most likely students that the teacher would

want to use the program with.

I firstly gave the program to each tester on a laptop and asked them to create an orbit, neither of

them had any experience with the program and so this was a test of how intuitive the program was

to use. I then allowed the testers to continue to play with the program for around fifteen minutes

noting anything interesting that they were doing below.

Tester 1: GCSE Physics Student (Year 11)

Outline of what they did Comments

Creates 20 planets – engaged trace and merge
– altered speed to 0 – all planets merged –
cleared all

Create 5 planets and plays with varying speed –
then they put trace on to watch them move –
they paused the program and deleted a planet
cleared all

Create a large planet with five satellites in
attempt of orbit – unsuccessful

Placed multiple planets on screen then
repeatedly pressed the play/pause – program
crashed

This is likely due to the graphics object being
called from the two-simultaneously running
threads at once. I had encountered this
problem before when I added the advance tab
show/hide tick box, however, despite fixing it
there I did not realise it was an issue with the
play pause button. It is likely to be more
complex of an issue with the play pause button
as there is a lot more code running in relation
to the graphics than there was with the show/
hide advance tab

Main points:

• He commented on flashing at speed 2 with 20 bodies on screen

• He suggested adding an introductory home screen with instructions on how to use the

program

• He was also annoyed that when trace was on and he deleted a single planet all of the traces

where deleted

Matthew Micklewright

pg. 133

• The crashing when repeatedly pressing play/pause doesn’t seem like a large issue to me and

it was likely enhanced by the fact that there were 20 bodies on the screen at that time

Tester 2: A Level Physics student (Year 13)

Outline of what they are doing Comments

Attempted to create an orbit and was
successful after a few attempts varying the
initial velocity

They seemed to find the initial velocity entry
system initially slightly confusing as they were
expecting the planet to follow the line rather
than move away from it. However, after playing
with it for a few moments they understood and
commented that it was ‘like a piece of elastic’

They next saved the simulation that they had
created

They then attempted to load in a text file from
another file location which had not been
formatted in the way gravitas required – the
program crashed when it tried to load this file

Whilst it would be safer to use a unique file
format so that other programs cannot create
incompatible files which gravitas may try to
load it is not something which is achievable in
the current timescale. It is definitely something
I would add, however, given more time.
Also, I think that it is important to note that the
tester was deliberately trying to crash the
program and most users would not stray from
the premade ‘Gravitas Saves’ folder than has
been created for them in their C drive.

Main points:

• She had to spend less time getting to grips with the way the program worked, however she

still commented that she thought it would be difficult for a younger child to immediately

understand

• Another alternative to having a unique file format would be to put some sort of validation

before a file is loaded into the program. Perhaps, when every file is saved it has a number or

string on the first line that the program can recognize so that it knows it was made by

Gravitas and therefore is safe to try and load. The issue is that if I did it in that way it would

mean that all previous saved files would be incompatible with the new version.

Matthew Micklewright

pg. 134

Evaluation
In this final section I will be going back to the physics teachers to see what they think of the solution

that I’ve made and to see if they are happy that it meets the goals we set out in the analysis section.

In this first section, however, I will be evaluating my own solution based on the requirements and

objectives in my analysis section.

Self-Evaluation
System Requirements:

• Have an animated GUI showing the moving bodies

I think that this has definitely been achieved as my solution simulates the movement of

bodies and the trace tool is helpful in seeing where the planets have moved from

• Change Mass of the bodies by changing the density and radius

This has also definitely been achieved as the way that a planets mass is controlled in the

program is by changing its radius and density

• Have an initial velocity system, this will allow the users to create orbits easily by providing a

perpendicular velocity to the pull of gravity

Again, as shown in test 4 of my system testing, providing a perpendicular velocity in this way

will produce an orbit

• Change colour of bodies to easily identify the different bodies that the user creates

Within the program there are five different colours that planets can be, I feel that this is an

appropriate amount especially considering that the user initially asked to simulate five

different planets at once. I think that, with the colours provided it is easy to create an easy

to understand, yet complex simulation.

• Clear and intuitive user interface for first time users, the program is designed to educate so it

is important that the solution is intuitive and first time users are not put off by a long-winded

manual and confusing controls.

I think that as shown in the black box system testing it does not take long for a user to pick

up the program and start making some reasonably complex simulations.

• Have the majority of inputs performed graphically so that it is easy for the user to

understand the forces acting on the planet.

The main inputs for creating a planet are to change the radius and density and also to click

and drag on the screen to create a planet and give it an initial velocity. It would be

preferable to have the radius and density done graphically in some way but I could not think

of a particularly easy and non-complex solution. I think that having a clearly labelled textbox

is a good enough alternative.

• Have an option to save simulations and also to load them later

I am happy that this works well, it may have been preferable to have the saves in a format

other than text files as it is possible that the text file could be edited to a form that the

program is not expecting to have to interpret. However, leaving the saved files as text files

means that if someone wanted to do something like, make a spreadsheet to create saved

files with perfect orbits, it would be much easier for them.

• Have advanced functionality that allows advanced users to create more complex models,

however this should not interfere with the simple user interface for the majority of users.

This requirement, I feel, has been somewhat fulfilled with the addition of the advanced tab,

it allows he user to investigate the masses of the planets and calculate their pulls if they wish

Matthew Micklewright

pg. 135

to. A possible future feature may be to add an option to see the force pulling a planet from

the other planets.

I will indicate the success of these objectives by using a traffic light system. Green for an achieved

objective, amber for a partially achieved or unachieved objective (as long as there as is a reason why

I couldn’t achieve it or why I shouldn’t do it in that way) and finally red if there is an objective I have

not achieved for no reason.

System Objectives

Objective Comments

Have a smooth animation that does not flash
and is not stop start

Compared to my initial efforts to create this
program the flickering has been massively
reduced. There is no flicker when running at a
speed of 3 or above on most computers (or
when trace is on at any speed), however below
3 the flicker slowly gets worse.
This flickering has been a large issue for me and
I think that the main reason is that VB isn’t
particularly good for graphics. I did, in my
design section, anticipate that it might not be
as good as C# in this respect but I did not
realise that it would be to this extent.
If I were to start this process again I would
probably be a lot more tempted to user C# or
C++ even though I have gotten the flickering in
my program down to a manageable level.

Allow the user to create and delete planets on
the screen

Using the add and delete planet tools the user
can add and remove planets by clicking on
them

Have a pause and play mode so that the user
can edit their model and then play it to see
what happens

The user adds in their planets with velocities
etc. and then clicks play to see what effect
gravity will have

Have most of the functionality in one window
so that the user is not confused by many
different forms opening and closing.

There is only one form in the program, however
the saving and loading opens a windows
explorer dialogue but I feel that is reasonable
as it is likely to be a format that the user is
familiar with

Processing Objectives

Objective Comments

Map the movement of, at least, of five bodies My program can handle up to 20 objects and
could do more, the limiting factor is the size of
the array planets which has size 20. If the user
wanted more than 20 planets then that is a
possible change

Allow the user to define an initial velocity for a
body that will be stored as a vector

By dragging the mouse after creating a planet
the user can give it a velocity. This line’s length
and direction are then recorded and it is stored
as a vector

Matthew Micklewright

pg. 136

Realistically mimic movement due to gravity of
the bodies

I feel that it can mimic spherical and elliptical
orbits as well as diverting a moving planet. The
motion, to me, seems to fit with the idea I have
of gravitational motion however, it is up to the
physics teachers whether it is totally accurate
or has some inaccuracies that I have failed to
spot.

Resolve a minimum of six forces into one vector As the program can handle and accurately map
20 different objects I feel that it is more than
capable of this. To calculate the motion of one
planet it must resolve the forces acting on it by
every other planet

Calculate mass from density and radius for each
planet

The only two text inputs for a planet are
density and radius (aside from colour but this
has no effect other than visually). From the
density and radius the planets mass is
calculated

User Objectives

Objective Comments

Allow the user to alter the radius, density and
colour of a planet

All three of these things work and changing
them will change the type of planet the user
will create when clicking on the canvas

All text boxes, buttons etc. should be clearly
labelled to make it intuitive

All of the tools and textboxes that the user can
interact with have tool tips and clear labels

Allow the user to delete one planet at a time Using the delete tool the user can delete a
single planet

Allow the user to delete the entire simulation
at once

Using the clear all tool the user can delete the
entire simulation

Have an additional advanced menu for more
knowledgeable users, this should not intrude
on the base UI.

The advanced tab is hidden from the user until
it is requested by ticking the ‘show advanced’
tick box. The tab then shows and will give the
user additional details on a selected planets
mass, velocity, position etc. These details are
crucial when trying to design a complex system
where doing calculations with your values is
crucial.

Possible improvements:

For all of these improvements I will list the improvement and then a brief outline on how I might add

this to my current solution.

• Add a zoom function so the user can see off screen planets – For the zoom I would need to

rescale all of the planets’ radii to a certain factor depending on how much the user has

zoomed in or out, the input for the zooming would probably be scrolling the mouse wheel

up and down. Add a camera tracking function which will make a particular object the centre

of the screen

Matthew Micklewright

pg. 137

• Add a way to copy and paste planets – I could do this perhaps by adding a right click menu

when the user clicks on a planet, or perhaps by having the user use ctrl-C and ctrl-V. the

main problems with these are how the user positions the planet they have pasted, it would

probably be necessary to have a move planet tool which would be drag and drop.

• Add a predictive line to the planets movements when drawing the initial velocity line – this

would make it easier to create an orbit graphically as it would require less guesswork – this

could possibly be done by having the program calculate a few steps ahead when adding a

new planet to the canvas. The program would then have to figure out where the planet will

be after every calculation cycle and plot that point, finally it needs to draw a line through the

point.

• Add an option to switch off gravitational attraction or to reverse it – this should be possible

simply by putting a minus sign into the motion to invert it. As for switching of the gravity this

would be possible by simply by cutting out the piece of code that calculates the forces and

modifies the initial velocity with the motion from gravitational attraction.

• Add a tool that has the camera track one planet as the centre of the screen - I would do this

not by moving the camera and the grid on which all the planets sit, but by moving the

tracked planet to the centre of the grid and then moving all of the other planets by not only

their own forces but also the relative motion. This would be reasonably complex and I think

would take some time to work out exactly how the motion would be calculated but I think it

would be possible.

Personal Evaluation

I’ve tried to create a fully working solution that fulfils the basic needs of the users. There are

definitely improvements that I would like to make such as zooming and moving the camera position,

however, because of a limited time scale and because I’ve been slightly limited by my choice of

programming language I decided not to try to implement them. I felt it was more important that the

user got a bug free and finished program with limited features than an advanced program which had

major bugs and design shortfalls.

User feedback
Comments from black box tester 1 – GCSE Physics Student

‘I think it needs a menu which has an option for a tutorial mode or a set of instructions’

‘the flashing is a little bit distracting but it is usable at slower speeds’

Comments from black box tester 2 – A level Physics Student

‘there are a few bugs, but on the whole it’s not bad, it would definitely benefit on being able to

move the camera around or zooming out though’

Comments from physics teacher

‘It is an acceptable solution, in terms of being able to change the simulation it is very easy however it

isn’t especially intuitive to use and students would need explanation before they were able to use it

properly.’

‘It has all of the desired properties and tools but it would be helpful to have the zoom function’

Matthew Micklewright

pg. 138

Evaluation of feedback
Looking at the feedback that I got from my testers and also from the physics teacher it seems that

the program isn’t as intuitive as I had thought. This is obviously a possibility when designing a system

as you have designed it in a way you think is sensible but it might not make sense to someone else. If

I were to make changes to my system, I would like to add a tutorial mode where it shows you how to

create an orbit etc.

Given more time I would also like to try and add functionality to zoom and pan the camera,

however, I’m not sure that this would be possible to do (smoothly if at all) in VB.Net. I think it may

be more sensible to re-do the system in a language such as C# or C++ which can handle graphics

better. As I have said previously in this document, despite looking at a variety of languages at the

very start of my design phase I underestimated just how complex it might be to do smooth and easy

to manipulate graphics in VB.net. I think that if I had done the program in a C language I could have

spent a lot less time trying to get acceptable graphics and more time fixing these few bugs that have

crept into the final version as well as adding much need features such as the moving camera and

tutorial mode.

